首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值. 试求: (Ⅰ)(X,Y)的联合概率密度; (Ⅱ)关于Y的边缘概率密度函数; (Ⅲ)P{X+Y>1}.
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值. 试求: (Ⅰ)(X,Y)的联合概率密度; (Ⅱ)关于Y的边缘概率密度函数; (Ⅲ)P{X+Y>1}.
admin
2016-03-21
28
问题
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值.
试求:
(Ⅰ)(X,Y)的联合概率密度;
(Ⅱ)关于Y的边缘概率密度函数;
(Ⅲ)P{X+Y>1}.
选项
答案
(Ⅰ)根据题设X在(0,1)上服从均匀分布,因此其概率密度函数为 [*] 而变量Y,在X=x的条件下,在区间(x,1)上服从均匀分布,所以其条件概率密度为 [*] 再根据条件概率密度的定义,可得联合概率密度 [*] (Ⅱ)根据求得的联合概率密度,不难求出关于Y的边缘概率密度 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tVw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上点(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终飞向飞机,且速度大小为2v.导弹运行方程。
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f[tx1+(1-t)x2]≤tf(x1)+(1-t)f(x2).证明:
设f(x)在[a,+∞)上连续,且存在,证明:f(x)在[a,+∞)上有界。
在方程组中a1+a2=b1+b2,证明该方程组有解,并求出其通解.
设方程的全部解均以π为周期,则常数a取值为
设f(u)为u的连续函数,并设f(0)=a>0.又设平面区域σ1={(x,y)||x|﹢|y|≤t,t≥0},Ф(t)=f(x2﹢y2dxdy.则Ф(t)在t=0处的右导数Ф’﹢﹢(0)=()
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
设函数f(u)可导,y=f(sinx)当自变量x在x=π/6处取得增量△x=,相应的函数增量△y,的线性主部为1,则f’(1/2)=().
设生产与销售某产品的总收益R是产量x的二次函数,经统计得知:当产量x=0,2,4时,总收益R=0,6,8,是确定总收益R与产量x的函数关系。
随机试题
女性,50岁。2年来经常出现后背痛,夜间饥饿痛,内镜检查提示为十二指肠球后溃疡。下列关于十二指肠球后溃疡的说法正确的是
关于进出口货物税费的计算,下列表述正确的是()。
封闭式基金的利润分配,每年不得少于( )次。
有关现金流量表与利润表的说法,错误的是()。
与债券筹资方式相比,银行借款筹资的优点包括()。
下列著名画家中,属于现当代的有()。
某社区青少年服务中心在暑假期间拟举办一系列活动,需要招募20名志愿者。在实施招募的过程中,若采用授予权力的方式,中心主任适当的做法是()。
阅读文本材料和具体要求,完成问题。《再别康桥》原文再别康桥徐志摩轻轻的我走了,正如我轻轻的来;我轻轻的招手,作别西天的云彩。那河畔的金柳,是夕阳中的新娘;波光里的艳影,在我的心头荡漾。软泥上的青荇,油油的在水底招摇;
有人说公安干警是服务者,有人说公安干警是执法者.你怎么看?
(2005年真题)任取一个正整数,其平方数的末位数字是4的概率等于[]。
最新回复
(
0
)