首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
admin
2022-01-05
62
问题
设函数f(x)在区间I上有定义,若实数x
0
∈I,且满足f(x
0
)=x
0
,则称x
0
为f(x)在区间I上的一个不动点,设函数f(x)=3x
2
+(1/x
2
)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
选项
答案
显然f(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的不动点,即g(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的零点。 因为g’(x)=6x-2/x
3
=1,g’(1/2)=-14<0,g’(1)=3>0,且g”(x)=6+6/x
4
>0,所以g’(x)在(0,+∞)上有唯一零点x
0
∈(1/2,1)且为g(x)的极小值点。 于是g(x)在区间(0,+∞)上的最小值为min g(x)=g(x
0
)=3x
0
2
+(1/x
0
2
-x
0
)-18/25>3/4-18/25-3/100>0, 这表明g(x)在区间(0,+∞)上没有零点,因此f(x)在(0,+∞)上不存在不动点。
解析
转载请注明原文地址:https://kaotiyun.com/show/toR4777K
0
考研数学三
相关试题推荐
当x→1时,函数f(x)=的极限()
对任意两个随机变量X和y,若E(XY)=E(X).E(Y),则
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,),)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
设f(x)是连续函数,F(x)是f(x)的原函数,则
设A是m×n矩阵,B是n×m矩阵,则()
设n阶方阵A、B、C满足关系式ABC=E,其中E为n阶单位矩阵,则必有【】
设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为.记Yi=Xi-,i=1,2,…,n.求:(Ⅰ)求Yi的方差DYi,i=1,2,…,n;(Ⅱ)求Y1与Yn的协方差Cov(Y1,Yn);(Ⅲ)
设函数y=y(x)是微分方程y′—xy=满足y(1)=特解.设平面区域D={(x,y)|1≤x≤2,0≤y≤y(x)},求D绕x轴旋转所得旋转体的体积.
从正态总体,v(μ,σ2)中抽取一容量为16的样本,S2为样本方差,则
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
随机试题
碳酸盐岩根据矿物成分可分为()和白云岩两大类。
补中益气汤主治
FIDIC施工合同约定的工程计量,当承包商未到场时,如果承包商被要求检查记录( )天内,没有向工程师发出不同意该记录的通知,该记录应作为准确予以认可。
工程变更的原因一般主要有( )等几个方面。
成本结构主要由()组成。
装饰音记号的名称是()
妈妈对孩子说:“写完作业才可以奖励你去吃肯德基”,结果孩子快速高效地完成了作业。这是因为孩子受到了()。
简述《陕甘宁边区施政纲领》的主要内容和意义。
设曲线y=a+x—x2,其中a<0.当x>0时,该曲线在x轴下方与y轴、x轴所围成图形的面积和在x轴上方与x轴所围成图形的面积相等,求a.
假设AL寄存器中的内容是7FH,执行指令ADDAL,2后,符号标志SF和进位标志CF的状态分别是
最新回复
(
0
)