首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
admin
2022-01-05
76
问题
设函数f(x)在区间I上有定义,若实数x
0
∈I,且满足f(x
0
)=x
0
,则称x
0
为f(x)在区间I上的一个不动点,设函数f(x)=3x
2
+(1/x
2
)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
选项
答案
显然f(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的不动点,即g(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的零点。 因为g’(x)=6x-2/x
3
=1,g’(1/2)=-14<0,g’(1)=3>0,且g”(x)=6+6/x
4
>0,所以g’(x)在(0,+∞)上有唯一零点x
0
∈(1/2,1)且为g(x)的极小值点。 于是g(x)在区间(0,+∞)上的最小值为min g(x)=g(x
0
)=3x
0
2
+(1/x
0
2
-x
0
)-18/25>3/4-18/25-3/100>0, 这表明g(x)在区间(0,+∞)上没有零点,因此f(x)在(0,+∞)上不存在不动点。
解析
转载请注明原文地址:https://kaotiyun.com/show/toR4777K
0
考研数学三
相关试题推荐
设随机变量x的密度函数为f(x)=,则概率P{λ<X<λ+a}(a>0)的值()
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
若级数在x=-1处收敛,则此级数在x=2处
设f(x)在x=0的某邻域内连续,若,则f(x)在x=0处().
函数y=C1ex+C2e﹣2x+xex满足的一个微分方程是().
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
设D是有界闭区域,下列命题中错误的是
设f(x)二阶连续可导,,则().
(09年)设曲线y=f(χ),其中f(χ)是可导函数,且f(χ)>0.已知曲线y=f(χ)与直线y=0,χ=1及χ=t(t>1)所围成的曲边梯形绕χ轴旋转一周所得的立体体积值是该曲边梯形面积值的πt倍,求该曲线的方程.
设则f"’(0)=_______.
随机试题
商务谈判中的讨价还价集中体现在()
咬肌间隙感染最常见的病灶牙是
“从一个处于私人地位的产生者身上扣除的一切,又会直接或间接地用来为处于社会成员们的这个生产者谋福利的性质”,即“取之于民,用之于民”,这是()提出的。
对于中、远地区(超过2000km)广播的短波发射台,天线发射前方1km以内,总坡度一般不应超过()。
汇总记账凭证账务处理程序是直接根据记账凭证逐笔登记总分类账的一种账务处理程序。()
海关签字,并加盖“海关验讫章”的出口报关单可作为()使用。
一般纳税人销售下列货物应当按照11%的税率征收增值税的有()。
根据下列资料,回答以下问题。国家统计局发布的数据显示,2012年7月份,社会消费品零售总额16315亿元,同比名义增长13.1%(扣除价格因素实际增长12.2%,以下除特殊说明外均为名义增长)。下列选项中,从消费形态看,2011年1—5月与
以下朝代国号名称的由来系根据封爵定国名的是()
Practiseansweringthesequestions.Whatkindofjobwouldyoumostliketohave?Whatarethemainproductsmadeinyou
最新回复
(
0
)