首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
设函数f(x)在区间I上有定义,若实数x0∈I,且满足f(x0)=x0,则称x0为f(x)在区间I上的一个不动点,设函数f(x)=3x2+(1/x2)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
admin
2022-01-05
105
问题
设函数f(x)在区间I上有定义,若实数x
0
∈I,且满足f(x
0
)=x
0
,则称x
0
为f(x)在区间I上的一个不动点,设函数f(x)=3x
2
+(1/x
2
)-(18/25),则f(x)在区间(0,+∞)上是否有不动点?若有,求出所有不动点;若没有,说明理由。
选项
答案
显然f(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的不动点,即g(x)=3x
2
+1/x
2
-18/25在(0,+∞)上的零点。 因为g’(x)=6x-2/x
3
=1,g’(1/2)=-14<0,g’(1)=3>0,且g”(x)=6+6/x
4
>0,所以g’(x)在(0,+∞)上有唯一零点x
0
∈(1/2,1)且为g(x)的极小值点。 于是g(x)在区间(0,+∞)上的最小值为min g(x)=g(x
0
)=3x
0
2
+(1/x
0
2
-x
0
)-18/25>3/4-18/25-3/100>0, 这表明g(x)在区间(0,+∞)上没有零点,因此f(x)在(0,+∞)上不存在不动点。
解析
转载请注明原文地址:https://kaotiyun.com/show/toR4777K
0
考研数学三
相关试题推荐
以下命题中正确的是()
若f”(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内()
考虑二元函数f(x,y)的四条性质:①f(x,y)在点(x0,y0)处连续,②f(x,y)在点(x0,y0)处的两个偏导数连续,③f(x,),)在点(x0,y0)处可微,④f(x,y)在点(x0,y0)处的两个偏导数存在。则有()
设随机变量X与Y相互独立,其分布函数分别为FX(x)与FY(y),则Z=max{X,Y}的分布函数fZ(z)是()
下述命题:①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续;②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界;③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函
设f(x)二阶连续可导,,则().
(89年)已知z=f(u,v),u=χ+y,v=χy,且f(u,v)的二阶编导数都连续,求.
从正态总体,v(μ,σ2)中抽取一容量为16的样本,S2为样本方差,则
设曲线y=(1+x),则下列说法正确的是().
设f(x)在x=0处连续,且,则曲线y=f(x)在(0,f(0))处的切线方程为__________.
随机试题
不孕,月经不规则,多毛,肥胖见于
女性,30岁,咳嗽1年,偶有咯血,反复多次行胸片检查未见异常,抗感染治疗后无好转,该患者目前最应该做的检查是
应激状态下最常见的情绪反应是
输血最严重的并发症是()
( )应当根据放射性固体废物处置场所选址规划,提供放射性固体废物处置场所的建设用地,并采取有效措施支持放射性固体废物的处置。
根据《中华人民共和国森林法》,占用林地的单位应当缴纳森林植被恢复费。森林植被恢复费征收使用管理办法由()制定。
下列关于上市公司收购人权利义务的表述中,不符合上市公司收购法律制度规定的是()。
1ConsidertheseresultsfromastudyreleasedlastweekbytheManhattanInstitute,aNewYork-basedthinktank:Two-thirds
Migrationisusuallydefinedas"permanentorsemi-permanentchangeofresidence."Thisbroaddefinition,ofcourse,wouldinclu
【S1】【S7】
最新回复
(
0
)