首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为 (1)求矩阵A. (2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为 (1)求矩阵A. (2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
admin
2020-09-25
104
问题
已知二次型f(x
1
,x
2
,x
3
)=x
T
Ax在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,且Q的第3列为
(1)求矩阵A.
(2)证明A+E为正定矩阵,其中E为3阶单位矩阵.
选项
答案
(1)由于二次型在正交变换x=Qy下的标准形为y
1
2
+y
2
2
,所以A的特征值为λ
1
=λ
2
=1,λ
3
=O. 由于Q的第3列为[*].所以A对应于λ
3
=0的特征向量为α
3
=[*] 由于A是实对称矩阵,所以对应于不同特征值的特征向量是相互正交的,设属于λ
1
=λ
2
=1的特征向量为α=(x
1
,x
2
,x
3
)
T
,则α
T
α
3
=0,即[*] 取α
1
=(0,1,0)
T
,α
2
=(一1,0,1)
T
,则α
1
,α
2
与α
3
是正交的,即为对应于λ
1
=λ
2
=1的特征向量.由于α
1
,α
2
是相互正交的,所以只需单位化: [*] (2)由于A的特征值为1,1,0,所以A+E的特征值为2,2,1,则A+E的特征值全大于零,故A+E是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/uWx4777K
0
考研数学三
相关试题推荐
微分方程y"+2y’+5y=0的通解为________。
已知,A*是A的伴随矩阵,那么A*的特征值是________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明;向量组β,β+α1,…,β+αt线性无关.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
设齐次线性方程组经高斯消元化成的阶梯形矩阵是,则自由变量不能取成
实二次型f(x1,x2,…,xn)的秩为r,符号差为s,且f和一f合同,则必有()
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
压力容器用钢的基本要求是有较高的强度,良好的塑性、韧性、制造性能和与介质的相容性,硫和磷是钢中最有害的元素,我国压力容器对硫和磷含量控制在()以下。
某妇女,孕36周,行产前检查,下列结果哪项异常
副霍乱病人的便是细菌性痢疾病人的便是
喹诺酮类药物影响儿童对钙离子吸收的结构因素是
A.胃肠道反应B.肌病C.神经系统疾病D.血液系统疾病E.心血管系统疾病氨基糖苷类药物引起的典型药源性疾病是()。
《UCP600》规定,标明“正本”(original)字样的单据为正本单据,须经出单人签署方为有效。标明“副本”(Copy)或不标明“正本”字样的单据为副本单据,无须签署。()
形成有文化特色、有地域特色、可识别的小城镇发展模式,是一个长期的渐进过程。我们应尊重当地实际,_________、远近结合、量力而行,不能盲目_________。在模式选择上,可以借鉴国内外小城镇建设的经验,但更重要的是结合自身实际、体现自身特色。 依
关于函数重载,下列叙述中错误的是()。
打开工作簿文件EXC.XLSX,对工作表“产品销售情况表”内数据清单的内容按主要关键字“分公司”的降序次序和次要关键字“产品名称”的降序次序进行排序,完成对各分公司销售额总和的分类汇总,汇总结果显示在数据下方,工作表名不变,保存EXC.XLSX工作簿。
Thisisanexcitingareaofstudy,andone______newapplicationsarebeingdiscoveredalmostdaily.
最新回复
(
0
)