首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2-(Aa2+Cb2)k+(AC-B2)a2b2=0的根.
求证:f(x,y)=Ax2+2Bxy+Cy2在约束条件g(x,y)=下有最大值和最小值,且它们是方程k2-(Aa2+Cb2)k+(AC-B2)a2b2=0的根.
admin
2016-07-22
57
问题
求证:f(x,y)=Ax
2
+2Bxy+Cy
2
在约束条件g(x,y)=
下有最大值和最小值,且它们是方程k
2
-(Aa
2
+Cb
2
)k+(AC-B
2
)a
2
b
2
=0的根.
选项
答案
因为f(x,y)在全平面连续,[*]为有界闭区域,故f(x,y)在此约束条件下必有最大值和最小值. 设(x
1
,y
1
),(x
2
,y
2
)分别为最大值点和最小值点,令 [*] 则(x
1
,y
1
),(x
2
,y
2
)应满足方程 [*] 记相应乘子为λ
1
,λ
2
,则(x
1
,y
1
,λ
1
)满足 [*] 解得[*],即λ
1
,λ
2
是f(x,y)在椭圆[*]上的最大值和最小值. 又方程组①和②有非零解,系数行列式为0,即[*]化简得λ
2
-(Aa
2
+Cb
2
)λ+(AC-B
2
)a
2
b
2
=0,所以λ
1
,λ
2
是上述方程(即题目所给方程)的根.
解析
转载请注明原文地址:https://kaotiyun.com/show/uew4777K
0
考研数学一
相关试题推荐
设奇函数f(x)在[-1,1]上二阶可导,且f(1)=l,证明:(1)存在ξ∈(0,1),使得f’(ξ)=1;(2)存在η∈(-1,1),使得f"(η)+f’(η)=1.
在右半平面内向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj是二元函数u(x,y)的梯度,求参数λ,u(x,Y).
函数u=满足方程=________。
求常数项级数的和:
求微分方程y”-4y=sin3xsinx+cos2x的通解.
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3,经正交变换x=Py化成f=y22+2y32,P是3阶正交矩阵,试求常数α、β.
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量的极大线性无关组是()
设线性方程组问a为何值时,方程组有唯一零解.a为何值时有非零解,并求方程组的通解.
设α=(1,2,3)T,β1=(0,1,1)T,β2=(-3,2,0)T,β3=(-2,1,1)T,β4=(-3,0,1)T,记Ai=αβiT,i=1,2,3,4.则下列矩阵中不能相似于对角矩阵的是()
设生产与销售某产品的总收益R是产量x的二次函数,经统计得知:当产量x=0,2,4时,总收益R=0,6,8,是确定总收益R与产量x的函数关系。
随机试题
政治的核心是_____。
确诊流行性出血热的依据是
A.林可霉素类B.酰胺醇类(氯霉素)C.四环素类D.氨基糖苷类E.氟喹诺酮类可导致软骨关节病损、跟腱炎症,18岁以下儿童禁用的抗菌药物是()
在实际评估工作中,如求取某幢高层住宅建筑物的损耗时,还应划分建筑物的主体与(),因为它们的耐用年限不同,损耗也不同。
公允价值,是指市场参与者在计量日发生的有序交易中,出售一项资产所能收到或者转移一项负债所需支付的价格。()
股票上市对公司可能的不利因素有()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
西方一位资产阶级政治家曾说:“民主国家乃是这样的国家,在那里,主权的人民受自己制定的法律领导,自己去做可能做的一切事情。”这段话的观点在于启示我们()。
下列不属于行为主义倡导者的是()。
西周天子和诸侯国所设大学分别称______和______。
最新回复
(
0
)