首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列矩阵中,不能相似对角化的矩阵为( )
下列矩阵中,不能相似对角化的矩阵为( )
admin
2019-01-25
58
问题
下列矩阵中,不能相似对角化的矩阵为( )
选项
A、
B、
C、
D、
答案
D
解析
本题考查矩阵可相似对角化的条件。实对称矩阵必可相似对角化;n阶矩阵A如果有n个不同的特征值或有n个线性无关的特征向量,则矩阵A必可相似对角化。
A选项的矩阵是实对称矩阵,因此必可相似对角化。
B选项的矩阵是一个上三角矩阵,主对角线元素即矩阵的特征值,因此该矩阵有3个
不同的特征值,则矩阵必可相似对角化。
C选项的矩阵设为C,则
得矩阵的特征值为9,0,0,对于二重特征值0,根据r(0E-A)=r(A)=1,可得齐次方程组(0E-A)x=0的基础解系有2个线性无关的特征向量;即属于特征值0的线性无关的特征
向量有2个,从而C选项的矩阵必可相似对角化。
D选项的矩阵是一个上三角矩阵,主对角线元素为其特征值,分别为-1,-1,2,对于特征值-1,由
可知齐次方程组(-E-A)X=0只有一个解向量,即属于二重特征值一l的特征向量只有1个,因此D选项的矩阵不能相似对角化。
综上所述,故本题选D。
转载请注明原文地址:https://kaotiyun.com/show/vhP4777K
0
考研数学三
相关试题推荐
求解微分方程.
设函数f(x)=收敛.
将函数f(x)=在点x0=1处展开成幂级数,并求f(n)(1).
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
已知λ=0是矩阵A=的特征值,求a的值,并求正交矩阵Q,使Q—1AQ=A.
设x1,x2,…xn是来自总体.X~N(μ,σ2)(μ,σ2都未知)的简单随机样本的观察值,则σ2的最大似然估计值为()
设总体X服从正态分布N(μ,σ2),X1,X2,…,Xn(n>1)是取自总体的简单随机样本,样本均值为()
随机试题
在病例对照研究中,变量的的测量应尽可能的采用
下列关于牙颌面畸形的叙述哪项是错误的()
下图为深圳万科城市花园住宅组团,其设计采用的布置方法是:
机构如图,杆ED的点H由水平绳拉住,其上的销钉C置于杆AB的光滑直槽中,各杆重均不计。已知FP=10kN。销钉C处约束力的作用线与x轴正向所成的夹角为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
莎士比亚戏剧中体现的很多观点、态度和思想——莎士比亚本人是否赞同有待探究,但放在今天无论如何是难以接受的。其中确有赤裸裸的政治不正确之处,弄得一些改编作品简直就像在讨伐莎士比亚。不过,这些貌似不敬的行为反倒是帮了莎士比亚的大忙。因为这些莎士比亚原作的衍生作
决策支持系统通过它的输出接口产生报告、数据库查询结果和模型的模拟结果,这些结果又提供了对决策过程中哪项的支持?
在美国国防部的可信任计算机标准评估准则中,安全等级最高的是()。
下列关于IPS的描述中,正确的是()。
Wehavetoaskthemtoquittalkinginorderthatallpeoplepresentcouldhearusclearly.
最新回复
(
0
)