下列矩阵中,不能相似对角化的矩阵为( )

admin2019-01-25  38

问题 下列矩阵中,不能相似对角化的矩阵为(    )

选项 A、 
B、 
C、 
D、 

答案D

解析 本题考查矩阵可相似对角化的条件。实对称矩阵必可相似对角化;n阶矩阵A如果有n个不同的特征值或有n个线性无关的特征向量,则矩阵A必可相似对角化。
A选项的矩阵是实对称矩阵,因此必可相似对角化。
    B选项的矩阵是一个上三角矩阵,主对角线元素即矩阵的特征值,因此该矩阵有3个
不同的特征值,则矩阵必可相似对角化。
  C选项的矩阵设为C,则

得矩阵的特征值为9,0,0,对于二重特征值0,根据r(0E-A)=r(A)=1,可得齐次方程组(0E-A)x=0的基础解系有2个线性无关的特征向量;即属于特征值0的线性无关的特征
向量有2个,从而C选项的矩阵必可相似对角化。
D选项的矩阵是一个上三角矩阵,主对角线元素为其特征值,分别为-1,-1,2,对于特征值-1,由

可知齐次方程组(-E-A)X=0只有一个解向量,即属于二重特征值一l的特征向量只有1个,因此D选项的矩阵不能相似对角化。
    综上所述,故本题选D。
转载请注明原文地址:https://kaotiyun.com/show/vhP4777K
0

最新回复(0)