首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列矩阵中,不能相似对角化的矩阵为( )
下列矩阵中,不能相似对角化的矩阵为( )
admin
2019-01-25
55
问题
下列矩阵中,不能相似对角化的矩阵为( )
选项
A、
B、
C、
D、
答案
D
解析
本题考查矩阵可相似对角化的条件。实对称矩阵必可相似对角化;n阶矩阵A如果有n个不同的特征值或有n个线性无关的特征向量,则矩阵A必可相似对角化。
A选项的矩阵是实对称矩阵,因此必可相似对角化。
B选项的矩阵是一个上三角矩阵,主对角线元素即矩阵的特征值,因此该矩阵有3个
不同的特征值,则矩阵必可相似对角化。
C选项的矩阵设为C,则
得矩阵的特征值为9,0,0,对于二重特征值0,根据r(0E-A)=r(A)=1,可得齐次方程组(0E-A)x=0的基础解系有2个线性无关的特征向量;即属于特征值0的线性无关的特征
向量有2个,从而C选项的矩阵必可相似对角化。
D选项的矩阵是一个上三角矩阵,主对角线元素为其特征值,分别为-1,-1,2,对于特征值-1,由
可知齐次方程组(-E-A)X=0只有一个解向量,即属于二重特征值一l的特征向量只有1个,因此D选项的矩阵不能相似对角化。
综上所述,故本题选D。
转载请注明原文地址:https://kaotiyun.com/show/vhP4777K
0
考研数学三
相关试题推荐
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值,证明:A与B有相同的特征向量.B相似于对角矩阵.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量,证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆阵.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设X1,X2,…,Xn是n个相互独立的随机变量,且E(Xi)=μ,D(Xi)=4,i=1,2,…,n,对于<μ+2}≥__________.
设随机变量X的分布函数FX(x)为严格单调增加的连续函数,Y服从[0,1]上的均匀分布,证明:随机变量Z=FX—1(Y)的分布函数与X的分布函数相同.
设随机变量X的概率密度为f(x)=(1)求Y的分布函数;(2)求概率P{X≤Y}.
设函数f(x)、g(x)均可微,且满足条件u(x,y)=f(2x+5y)+g(2x一5y),u(x,0)=sin2x,u’y(x,0)=0.求f(x)、g(x)、u(x,y)的表达式.
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x一1)y"一(2x+1)y’+2y=0的两个解,若u(一1)=e,u(0)=一1,求u(x),并写出该微分方程的通解.
已知在微分方程y’+p(x)y=f(x)中,p(x)≥c>0,且f(x)=0.试证:微分方程的通解当x→+∞时都趋于零.
设随机变量X,Y,Z两两不相关,方差相等且不为零,则X+Y与X+Z的相关系数为().
随机试题
下列对禽流感的描述错洪的是()。
患牙浮起、松动,局部黏膜明显红肿,伴全身不适、发热及淋巴结肿大。X线片示根尖周透射影。镜下见根尖周牙周膜坏死、液化形成大脓肿。周围牙槽骨骨髓腔中较多中性粒细胞浸润。这是
6岁男孩尿少,水肿2天,血压130/90mmHg,尿常规:蛋白(抖),红细胞25个/HP,白细胞15个/HP。应采取的紧急措施是
引起急性前间壁心肌梗死闭塞的冠状动脉分支是
甲公司对某公司(非乙公司)因或有事项确认了一项负债60万元;同时,因该或有事项,甲公司还可以从乙公司获得赔偿40万元,且这项赔偿金额基本确定能够收到。在这种情况下,甲公司在利润表中应确认的营业外支出为()万元。
器官
下列这些理论中,( )是小组工作发展模式的理论基础。
请阅读下列材料,并按要求作答。 看一看,因数与积的小数位数有什么关系。 想一想:上面这些小数乘法是怎样计算的? (1) 怎样点小数点? 3.7×4.60.29×0.076.5×8.4试分析小数乘法的算法。
()年级儿童能运用演绎推理来解释个别现象,但如果其解释与事实在表面上不相似时,判断中的逻辑关系就会受到破坏
A、Itisdifficultforstudentstogetanaveragescore.B、Thestudentsdiscussandtalkabouttheirlivesquiteoften.C、Itisr
最新回复
(
0
)