首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列矩阵中,不能相似对角化的矩阵为( )
下列矩阵中,不能相似对角化的矩阵为( )
admin
2019-01-25
64
问题
下列矩阵中,不能相似对角化的矩阵为( )
选项
A、
B、
C、
D、
答案
D
解析
本题考查矩阵可相似对角化的条件。实对称矩阵必可相似对角化;n阶矩阵A如果有n个不同的特征值或有n个线性无关的特征向量,则矩阵A必可相似对角化。
A选项的矩阵是实对称矩阵,因此必可相似对角化。
B选项的矩阵是一个上三角矩阵,主对角线元素即矩阵的特征值,因此该矩阵有3个
不同的特征值,则矩阵必可相似对角化。
C选项的矩阵设为C,则
得矩阵的特征值为9,0,0,对于二重特征值0,根据r(0E-A)=r(A)=1,可得齐次方程组(0E-A)x=0的基础解系有2个线性无关的特征向量;即属于特征值0的线性无关的特征
向量有2个,从而C选项的矩阵必可相似对角化。
D选项的矩阵是一个上三角矩阵,主对角线元素为其特征值,分别为-1,-1,2,对于特征值-1,由
可知齐次方程组(-E-A)X=0只有一个解向量,即属于二重特征值一l的特征向量只有1个,因此D选项的矩阵不能相似对角化。
综上所述,故本题选D。
转载请注明原文地址:https://kaotiyun.com/show/vhP4777K
0
考研数学三
相关试题推荐
证明级数收敛,且其和数小于1.
在xOy坐标平面上求一条曲线,使得过每一点的切线同该点的向径及Oy坐标轴一起构成一个等腰三角形.
设两个线性方程组(I),(Ⅱ)为证明:方程组(I)有解的充分必要条件是方程组(Ⅱ)无解.
设积分区域D={(x,y)|0≤x≤π,0≤y≤π},计算二重积分I=sinxsinymax{x,y}dxdy.
计算二重积分I=,其中积分区域D={(x,y)|x2+y2≤R2}.
设随机变量X与Y分别表示将一枚骰子接连抛两次后出现的点数.试求齐次方程组:的解空间的维数(即基础解系所含向量的个数)的数学期望和方差.
假设随机变量的分布函数为F(y)=1一e—y(y>0),F(y)=0(y≤0).考虑随机变量求X1和X2的联合概率分布.
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设函数f(x)在x=1的某邻域内连续,且有(Ⅰ)求f(1)及(Ⅱ)求f’(1),若又设f"(1)存在,求f"(1).
随机试题
经营者从事经营活动时不得采用的手段有
( )是指保险销售人员在准保户对投保建议书基本认同的条件下,促成准保户达成购买承诺的过程。
某中外合资纸业公司成立于1994年,1996年获利。2001年各季度应纳税所得额申报数额如下:第一季度累计90万元;第二季度累计160万元;第三季度累计210万元;全年累计320万元。2001年年终汇算清缴所税时发现以下需调整事项:(1)全年工资总额为28
区域物流平台是物流的载体,是一个包括诸多因素的复杂网络体系。其建设需要从()等方面进行统筹规划、协调发展。
下列选项中,属于行政事实行为的是()。
设f(x)=∫0xtg(x—t)dt,其中试求f(x),并问f(x)在(0,+∞)内是否可导?
计算机最早的应用领域是()。
Fundingpublictransitisoneofthebiggestproblemsfacingcitiestoday.Oftenthetroubleisthatafewhigh-cost,low-rider
Wherewasthismeetingheld?
Newresearchpointstoabiologicalroleincriminality.Thetattooontheex-con’sbeefyarmreads:Borntoraisehell.Muc
最新回复
(
0
)