首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵(n≥2),证明:R(A*)=
设A是n阶矩阵(n≥2),证明:R(A*)=
admin
2020-03-16
37
问题
设A是n阶矩阵(n≥2),证明:R(A
*
)=
选项
答案
当R(A)=n时,|A|≠0,因为|A
*
|=|A|
n—1
≠0,所以R(A
*
)=n。 当R(A)=n—1时,|A|=0,于是A
*
A=|A|E=O,所以R(A
*
)+R(A)≤n。再由R(A)=n—1,故R(A
*
)≤1。又因为R(A)=n—1,由矩阵秩的定义,A的最高阶非零子式为n—1阶,即存在M
ij
≠O,所以A
ij
=(—1)
i+j
M
ij
≠0,从而A
*
≠O,于是R(A
*
)≥1,故R(A
*
)=1。 当R(A)<n—1时,因为A的所有n—1阶子式都为零,即所有的M
ij
=0,所以A
*
=0,于是R(A
*
)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/vo84777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x3+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
求微分方程y’+ycosx=(lnx)e-sinx的通解.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
[2010年]设y1,y2是一阶线性非齐次微分方程y′+P(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则().
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2)上的最大值、最小值.
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
随机试题
________是指在政策制定过程中从一个不同的评价角度来看待事物。()
简述集中式密钥分配的概念。
琥珀胆碱属于:
患者男性,82岁,冠心病。因头昏、乏力1月余就诊,查心电图并绘制梯形图如图4—5—8所示,该梯形图显示的心律失常是
在VLDL的描述错误的是
牛发生瘤胃积食时,叩诊左肷部出现
此种情况下,可以提出执行商场的到期债务的是()。商场如提出下列意见,不构成异议的是()。
微分方程y"+ay’2=0满足条件的特解是:
按FIDIC条款,业主的主要责任是()。
Readthearticlebelowaboutgoodsreturnedbycustomerstomailordercompanies.Choosethebestwordorphrasetofilleac
最新回复
(
0
)