首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
admin
2019-05-14
38
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+
x
2
(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积为2.求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小.
选项
答案
由题设,当x≠0时, [*] 据此并由f(x)在点x=处的连续性,得 [*] 又由已知条件 [*] 即C=4-a.因此, [*] 旋转体的体积为 [*] 得驻点a
0
=-5.又 [*] 故当a=-5时,旋转体体积最小.
解析
转载请注明原文地址:https://kaotiyun.com/show/vp04777K
0
考研数学一
相关试题推荐
一大袋麦种的发芽率为80%,从中任意取出500粒进行发芽试验,计算其发芽率的偏差不超过2%的概率.
证明定积分I=sinx2dx>0.
设半径为R的球面∑的球心在定球面x2+y2+z2=a2(a>0)上,问R为何值时球面∑在定球面内部的那部分面积最大?
设f(x)是区间[-π,π]上的偶函数,且满足f(-x).证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
判断下列曲线积分在指定区域D是否与路径无关,为什么?∫Lf(x2+y2)(xdx+ydy),其中f(u)为连续函数,D:全平面.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,Xi,X(n)=max(X1,…,Xn).应用切比雪夫不等式证明:均为θ的一致性(相合性)估计.
(2017年)设薄片型物体S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为记圆锥面与柱面的交线为C.求S的质量M.
(1993年)设物体A从点(0,1)出发,以速度大小为常数v沿y轴正向运动,物体B从点(一1,0)与A同时出发,其速度大小为2v,方向始终指向A.试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.
证明:不等式-∞<x<+∞.
随机试题
截至2019年3月31日,证券业协会对证券公司2019年第一季度经营数据进行了统计。131家证券公司当期实现营业收入1018.94亿元,同比增长54.47%。其中,各主营业务收人分别为代理买卖证券业务净收入(含席位租赁)221.49亿元,同比增长
同际货币基金组织将货币划分为________、__________、___________。
美国、欧洲、日本的咨询业的特色。
危重症哮喘患者的临床表现,下列哪项不正确
某商业银行柜面客户经理在征得客户同意的情况下.将客户的电话号码及保险需求告诉了某在保险公司工作的朋友,帮助他尽快促成了一笔业务。该经理的做法()。
专项贷款最主要的还款来源为()。
内部管理机制是实行内控的基础,必须建立和完善,主要包括()。
下列项目适用13%税率的是()。
农业承包合同转包后,向原发包人履行合同的是()。
根据我国《专利法》的规定,以下发明创造中不能授予专利权的是()。
最新回复
(
0
)