首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求 求Bx=0的通解。
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求 求Bx=0的通解。
admin
2019-01-19
45
问题
已知A,B为三阶非零矩阵,且A=
β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组βx=0的三个解向量,且Ax=β
3
有解。求
求Bx=0的通解。
选项
答案
因为B≠0,所以r(B)≥1,则3一r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3一r(B)≥2,综上,r(B)=1。所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wBP4777K
0
考研数学三
相关试题推荐
随机变量X的密度为:f(χ)=且知EX=6,则常数A=_______,B=_______.
已知非齐次线性方程组有3个线性无关的解.(1)证明方程组系数矩阵A的秩r(A)=2;(2)求a,b的值及方程组的通解.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
已知随机变量X与Y独立,且X服从[2,4]上的均匀分布Y~N(2,16).求cov(2X+XY,(Y-1)2).
实a为实的n维非零列向量,E为n阶单位矩阵,证明:矩阵A=E-为对称的正交矩阵.
设A,B为同阶方阵,则A与B相似的充分条件是【】
求当x>0,y>0,z>0时,函数f(x,y,z)=lnx+2lny+3lnz在球面x2+y2+z2=6r2上的最大值.并证明:对任何正实数a、b、c,不等式ab2c3≤108()6成立.
若四阶矩阵A与B为相似矩阵,A的特征值为1/2、1/3、1/4、1/5,则行列式|B-1-E|=_______.
求函数f(x)=的最大值与最小值.
求下列微分方程的通解或特解:
随机试题
一种海洋蜗牛产生的毒素含有多种蛋白,把其中的一种给老鼠注射后,会使只有两星期大或更小的老鼠陷入睡眠状态,而使大一点的老鼠躲藏起来。当老鼠受到突然的严重威胁时,非常小的那些老鼠的反应是呆住,而较大的那些老鼠会逃跑。以上陈述的事实最有力地支持了以下哪项假说?
学习记忆比较长的材料,中间部分的内容记忆的效果差,是由于受到下列哪种干扰的影响?()
不属于副交感核的脑神经核是()
反映城市土地开发强度的指标有()。
会计人员因病暂时不能工作的,可以不与接管人员办理工作交接手续。()
与会计估计相关的、可能存在管理层偏向迹象的包括()。
一、注意事项1.申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。2.仔细阅读给定的资料,按照后面提出的“答题要求”依次作答。二、给定资料资料一几年前,有一本揭露官场内幕的小说《驻京办主任》风行一时
2014年1~6月,我国商品房单位面积售价高于上年同期的地区有()个。
UPS系统应具有稳压、()与()的智能管理能力。
Commonindoorplantsmayprovetobeavaluableweaponinthefightagainstrisinglevelsofindoorairpollution.Thoseplants
最新回复
(
0
)