首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求 求Bx=0的通解。
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求 求Bx=0的通解。
admin
2019-01-19
101
问题
已知A,B为三阶非零矩阵,且A=
β
1
=(0,1,一1)
T
,β
2
=(a,2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组βx=0的三个解向量,且Ax=β
3
有解。求
求Bx=0的通解。
选项
答案
因为B≠0,所以r(B)≥1,则3一r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3一r(B)≥2,综上,r(B)=1。所以β
1
,β
2
是Bx=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/wBP4777K
0
考研数学三
相关试题推荐
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
设X的密度为f(χ)=,-∞<χ<+∞求:(1)常数C和X的分布函数F(χ);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y).
设X~N(0,1),当给定X=χ时,Y~N(ρχ,1-ρ2),(0<ρ<1)求(X,Y)的分布以及给定Y=y时,X的条件分布.
设X与Y独立同分布,P(X=1)=P∈(0,1),P(X=0)=1-P,令问P取何值时,X与Z独立?(约定:0为偶数)
设k个总体N(μi,σ2)(i=1,…,K)相互独立,从第i个总体中抽得简单样本:Xi1,Xi2…,Xin,记Xi=,(i=1,…,k).又记n=试求T=的分布.
设数列{an}=0满足条件:a0=3,a1=1,an—2一n(n一1)an=0(n≥2),S(x)是幂级数anxn的和函数.(1)证明S"(x)一S(x)=0;(2)求S(x)的表达式.
微分方程yˊˊ+2yˊ+2y=e-xsinx的特解形式为()
证明方程组有解的必要条件是行列式并举例说明该条件是不充分的.
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
随机试题
因抗生素使用不当,大肠中的埃希菌转移到泌尿道定居,这种现象称
为中医辨证论治奠定了基础的医学著作是
土地行政诉讼程序包括有()、()、()、()、()、()。
废水处理系统中的预处理的目的是()。
【背景】某企业投资建设一个工业项目,该项目可行性研究报告中的相关资料和基础数据如下:(1)项目工程费用为2000万元,工程建设其他费用为500万元(其中无形资产费用为200万元),基本预备费费率为8%,预计未来3年的年均投资价格上涨率为5%。
按现行增值税规定,下列纳税中,可以适用6%征收率的是( )。
大数据的起源是()。
()的编纂标志着国民政府六法体系的构建完成
YourHostileWorkplaceMayBeKillingYou"Myjobiskillingme."Whoamongushasn’tissuedthatcomplaintatleastonce?
下列Cisco路由器配置snmp????,错误的是
最新回复
(
0
)