首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
admin
2019-06-04
84
问题
n维向量组(Ⅰ)α
1
,α
2
,…,α
s
和(Ⅱ)β
1
,β
2
,…,β
t
等价的充分必要条件是
选项
A、r(Ⅰ):r(Ⅱ),并且s=t.
B、r(Ⅰ)=r(Ⅱ)=n.
C、(Ⅰ)的极大无关组和(Ⅱ)的极大无关组等价.
D、(Ⅰ)和(Ⅱ)都线性无关,并且s=t.
答案
C
解析
极大无关组与原组是等价的.由等价的传递性立即可得到(Ⅰ)与(Ⅱ)等价的充分必要条件是它们各自的极大无关组等价.
选项A缺少条件r(Ⅰ,Ⅱ)=r(Ⅰ).
选项B是(Ⅰ)与(Ⅱ)等价的一个充分条件,但是等价并不要求向量组的秩达到维数.
选项D(Ⅰ)和(Ⅱ)都无关不能得到它们互相可以线性表示,例如
(Ⅰ):α
1
=(1,0,0,0),α
2
=(0,1,0,0),(Ⅱ):β
1
=(0,0,1,0),设β
2
=(0,0,0,1).
(Ⅰ)和(Ⅱ)都无关,并且s=t=2,但是(Ⅰ)和(Ⅱ)不等价.
转载请注明原文地址:https://kaotiyun.com/show/wGc4777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A.
设n阶矩阵A的元素全为1,则A的n个特征值是___________.
设矩阵A=,若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.令P=[α1,α2,α3],求P—1AP.
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求矩阵A.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=_______________.
(1)设系统由100个相互独立的部件组成.运行期间每个部件损坏的概率为0.1.至少有85个部件是完好时系统才能正常工作,求系统正常T作的概率.Ф()=0.9522.(2)如果上述系统由n个部件组成,至少有80%的部件完好时系统才能正常工作.问n至
设数列{an}满足a1=a2=1,且an+1=an+an-1,n=2,3,….证明在时幂级数收敛,并求其和函数与系数an.
设X1,X2,…Xn是独立同分布的随机变量序列,EXi=μ,DXi=σ2,i=1,2,…,N,令Yn=证明:随机变量序列{Yn)依概率收敛于μ.
设a1,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明ξ=[1,λ,λT,…,λn-1]T是A的对应于特征值λ的特征向量;
随机试题
下列不适合做PNF伸展练习的肌肉是()。
男性,38岁,10多年来,反酸、嗳气、上腹部疼痛,空腹发作,进食可缓解。经检查确诊为十二指肠溃疡,下面符合该病的描述为
维持子宫在正常位置,主要依靠
A.安全保障权B.知悉真情权C.自主选择权D.获得赔偿权甲药品零售企业出售不符合国家药品标准的维生素C片,此行为侵犯消费者的()。
建设项目竣工环境保护验收重点的依据主要包括()。
下列属于会计核算方法的是(),
钢铁、汽车等重工业以及少数储量集中的矿产品如石油等行业属于()类型的市场结构。
货币时间价值,主要参数有()。
一般把文化分为四个层次:物态文化层、制度文化层、()、()。
Whenworkersareorganizedintradeunions,employersfindithardtolaythem______.
最新回复
(
0
)