首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是( )
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是( )
admin
2018-07-26
13
问题
设向量组Ⅰ:α
1
,α
2
,…,α
r
可由向量组Ⅱ:β
1
,β
2
,…,β
s
线性表示.下列命题正确的是( )
选项
A、若向量组Ⅰ线性无关,则r≤s.
B、若向量组Ⅰ线性无关,则r>s.
C、若向量组Ⅱ线性无关,则r≤s.
D、若向量组Ⅱ线性无关,则,r>s.
答案
A
解析
1 由于(Ⅰ)可由(Ⅱ)线性表示,所以有r(Ⅰ)≤r(Ⅱ),而r(Ⅱ)≤S,当(Ⅰ)线性无关时,就有r=r(Ⅰ)≤r(Ⅱ)≤S,所以选项A正确.
2 设V是由向量组(Ⅱ)生成的向量空间,则V的维数≤S,由条件知(Ⅰ)
V,当(Ⅰ)线性无关时,V的维数≥r,故有r≤S,从而知选项A正确.
转载请注明原文地址:https://kaotiyun.com/show/wHW4777K
0
考研数学三
相关试题推荐
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,
设A,B均为n阶矩阵,E+AB可逆,化简(E+BA)[E-B(E+AB)-1A].
设f(x)=试确定常数a,使f(x)在x=0处右连续.
求下列微分方程的通解或特解:
求微分方程(x-4)y4dx-x3(y2-3)dy=0的通解.
已知α1=(1,-1,1)T,α2=(1,t,-1)T,α3=(t,1,2)T,β=(4,t2,-4)T,若β可以由α1,α2,α3线性表出且表示法不唯一,求t及β的表达式.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
若β=(1,2,t)T可由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表出,则t=_______.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
随机试题
没有法定依据或者不遵守法定程序的,行政处罚无效。()
目前医护人员称呼病人时用姓名,而不用床号,是为了满足病人的
背景资料:某桥梁3号墩为桩承式结构,承台体积约为200m3。,承台基坑开挖深度为4m,原地面往下地层依次为:0~50cm腐殖土,50~280cm黏土,其下为淤泥质土,地下水位处于原地面以下100cm。根据该桥墩的水文地质,施工单位在基坑开挖过程中采取了
“暖风熏得游人醉,直把杭州作汴州”诗句中的“汴州”即现今的()。
Studentsshouldinvolvethemselvesincommunityactivities______theycangainexperienceforgrowth.
人的本质是()。
紧急状态处置,是指公安机关为维护国家安全和社会治安秩序,对突发的重大暴力犯罪、重大治安事件和重大治安灾害事故依法采取的非常措施。()
CPU功能不包括()。
在信息系统开发中,不属于系统分析员主要工作的是()
Universalizationofeducationhasbeenapolicypriority,butitstillremainsanunfulfilleddream.Asaconsequence,thespre
最新回复
(
0
)