首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
admin
2019-03-12
103
问题
设非零n维列向量α,β正交且A=αβ
T
.证明:A不可以相似对角化.
选项
答案
令λ为矩阵A的特征值,X为λ所对应的特征向量,则AX=λX,显然A
T
X=λ
2
X, 因为α,β正交,所以A
2
=αβ
T
.αβ
T
=0,于是λ
2
X=0,而X≠O,故矩阵A的特征值为 λ
1
=λ
2
=…=λ
n
=0. 又由α,β都是非零向量得A≠O, 因为r(0E-A)=r(A)≥1,所以72一r(0E—A)≤n-1<n,所以A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/wMP4777K
0
考研数学三
相关试题推荐
设在区间[a,b]上,f(χ)>0,f′(χ)<0,f〞(χ)>0,令S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a),则().
设f(χ)在χ=1的某邻域内连续,且则χ=1是f(χ)的().
设随机变量X1,X2,X3,X4相互独立且都服从标准正态分布N(0,1),已知对给定的α(0<α<1),数yα满足P{Y>yα}=a,则有
求幂级数的收敛域D与和函数S(x).
差分方程yt+1—3yt=20cos满足条件y0=5的特解是________.
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Ax=0的基础解系,且矩阵A-6E不可逆。(Ⅰ)求齐次线性方程组(A-6E)x=0的通解:(Ⅱ)求正交变换x=Qy将二次型XTAx化为标准形;
设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数fZ(z).
设f(x)具有二阶连续导数,且f’(1)=0,则()
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(Ⅰ)验证f"(u)+=0;(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式。
随机试题
中共十一届三中全会以来改革开放和社会主义现代化建设取得了哪些成就?这些成就的取得说明了什么道理?
Areyouplanningavacation?Ifyoulikehotandextremelydrysummers,gotoPhoenix,Arizona.Forhottemperaturesbutlotsof
滴定分析中,一般利用指示剂的突变来判断化学计量点的到达,在指示剂变色时停止滴定,这一点为:
A.刺痛拒按,固定不移,舌暗,脉涩B.气短疲乏,脘腹坠胀,舌淡,脉弱C.胸胁胀闷窜痛,时轻时重,脉弦D.面色淡白,口唇爪甲色淡,舌淡,脉细E.少气懒言,疲乏无力,自汗,舌淡,脉虚气陷证可见的症状是
某甲为个体运输公司的老板,长期为某大型国有酒厂运输货物,双方签订了长期的运输合同。某日,甲的朋友张某、何某找到甲提出,某厂生产的“MT”酒价值高,市场好销,若能乘运输过程中,使用调包的手段,将假酒换成真酒,既能保住甲的业务,又能另行销售谋利,岂不两全其美,
以证券市场过去和现在的市场行为为分析对象,应用数学和逻辑的方法,探索出一些典型变化规律,并据此预测证券市场未来变化趋势的方法通常被称为( )。
某公司2019年3月通过挂牌取得一宗土地,土地出让合同约定2019年4月交付。土地使用证记载占地面积为6000平方米。该土地年税额4元/平方米,该公司2019年应缴纳城镇土地使用税()元。
一切历史都是现实,现实之外别无历史。所谓“现实之外”同“世界之外”一样,只在纯语言学意义上和逻辑学意义上才有可能。现实之外并不是“非历史”,现实之前也不是“前历史”。我们不能说先有历史后有现实,而只能说有历史就有现实;既不能笼统地说历史先在于现实,也不能抽
简述逃税罪的构成要件。(2012年一法专一第32题)
ThecuisineofMexicocanbedatedbackto700B.C.,whentheareawaspopulatedbyIndianswhosestaplefoodwascorn.Inthec
最新回复
(
0
)