首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数. 试问a1,a2,…,an满足何条件时,二次型f(x1,x2,…,xn)
设n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数. 试问a1,a2,…,an满足何条件时,二次型f(x1,x2,…,xn)
admin
2020-09-25
68
问题
设n元实二次型f(x
1
,x
2
,…,x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n-1
+a
n-1
x
n
)
2
+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.
试问a
1
,a
2
,…,a
n
满足何条件时,二次型f(x
1
,x
2
,…,x
n
)为正定二次型.
选项
答案
若f(x
1
,x
2
,…,x
n
)为正定二次型,则对任意x
1
,x
2
,…,x
n
有f(x
1
,x
2
,…,x
n
)≥0, 其中等号成立当且仅当x
1
=x
2
=…=x
n
=0. 由f(x
1
,x
2
,…,x
n
)的表达式可知对任意x
1
,x
2
,…,x
n
有f(x
1
,x
2
,…,x
n
)≥0, 其中等号成立当且仅当x
1
+a
1
x
2
=x
2
+a
2
x
3
=…=x
n-1
+a
n-1
x
n
=x
n
+a
n
x
1
=0. 所以f(x
1
,x
2
,…,x
n
)为正定二次型的充要条件是x
1
+a
1
x
2
=x
2
+a
2
x
3
=…=x
n-1
+a
n-1
x
n
=x
n
+a
n
x
1
=0的解为x
1
=x
2
=…=x
n
=0. 即方程组[*]仅有零解. 又方程组的系数行列式为[*]=1+(一1)
n+1
a
1
a
2
…a
n
, 所以当1+(一1)
n+1
a
1
a
2
…a
n
≠0即a
1
a
2
…a
n
≠(一1)
n
时方程组仅有零解,此时f(x
1
,x
2
,…,x
n
)为正定二次型.
解析
转载请注明原文地址:https://kaotiyun.com/show/wPx4777K
0
考研数学三
相关试题推荐
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
=_____________。
已知方程组有无穷多解,那么a=_______
设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______
设随机变量X和Y的联合概率分布为则X2和Y2的协方差Cov(X2,Y2)=________.
设随机变量X和Y相互独立,且都服从正态分布N(μ,σ2),则P{|X—Y|<1}()
设随机变量X的概率密度为令Y=X2,F(χ,y)为二维随机变量(X,Y)的分布函数.求(Ⅰ)Y的概率密度FY(y);(Ⅱ)Cov(X,Y);(Ⅲ)F(-,4).
设四阶方阵A的秩为2,则其伴随矩阵A*的秩为_____________.
设X1,X2,…,Xn,…相互独立且都服从参数为(λ>0)的泊松分布,则当n→∞时以Ф(x)为极限的是
设则m,n可取().
随机试题
高尔顿认为个体的发展及其个性品质早在基因中就决定了,这种观点属于个体身心发展动因理论中的()。
试述选用焊条的原则是什么?
对于转录调节因子叙述不正确的是
结核性脑膜炎蛛网膜下腔出血
虎斑心病毒性肝炎肝细胞气球样变
贱金属制戒指()
存款业务按客户类型,分为个人存款和()。
儿童心理发展最基本的自然物质前提是()。
Identicaltwinsareaperfecttestcasefortheoriesofpersonalitydevelopment.Ifatheorycan’texplainthedifferencesbetwe
A、Shehasnotappliedforanyuniversityyet.B、Shewillbeginuniversityclassesinafewweeks.C、Shedoesnotknowyetifau
最新回复
(
0
)