首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: 对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-03-22
58
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:
对任意实数λ,必存在ξ∈(0,η),使f’(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
证一 辅助函数F(x)可用凑导数法如下求出.将ξ改为x,得 {f’(x)-1-λ[f(x)-x])|
x=ξ
={f’(x)-x’-λ[f(x)-x}]|
x=ξ
={[f(x)-x]’-λ[f(x)-x]}|
x=ξ
=0. 在上式两端乘以e
-λx
,即得 {e
-λx
[f(x)-x]’+(e
-λx
)’[f(x)-x]}|
x=ξ
={e
-λx
[f(x)-x]}’|
x=ξ
=F’(x)|
x=ξ
=0. 于是有 F(x)=e
-λx
[f(x)-x]. 因F(x)在[0,η]上连续,在(0,η)内可导,且 F(0)=0, F(η)=e
-λx
[f(η)-η]=0, 由罗尔定理知,存在ξ∈(0,η)使F’(ξ)=0,即 e
-λx
{f’(ξ)-λ[f(ξ)-ξ]-1}=0, 亦即f’(ξ)-λ[f(ξ)-ξ]=1. 证二 下面用积分法(常数变易法)即解微分方程的方法求出F(x).为此将ξ改为x,由f’(ξ)-λ[f(ξ)-ξ]=1得到f’(x)-λf(x)=1-λx此为一阶线性非齐次方程,由其求解公式(1.6.1.1)式, [*] 得 [*] 解出C,得C=e
-λx
[f(x)-x],则F(x)=e
-λx
[f(x)-x].下同证一(略).
解析
转载请注明原文地址:https://kaotiyun.com/show/wYP4777K
0
考研数学三
相关试题推荐
设z=f(lnx+),其中函数f(u)可微,则=________。
设(a2n—1+a2n)收敛,则()
设F(x)=∫xx+2πesintsintdt,则F(x)()
设幂级数anxn在(一∞,+∞)内收敛,其和函数y(x)满足y"一2xy’一4y=0,y(0)=0,y’(0)=1。(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求y(x)的表达式。
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是()
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
由f(x)=—1+[*],由基本初等函数[*]的高阶导公式[*]可知,[*]
改变积分次序f(x,y)dx+f(x,y)dx.
设数列{xn}满足:x1>0,(n=1,2,…).证明:{xn}收敛,并求
随机试题
二进制10110转换为八进制数是________。
下列选项中属于慢性肾炎临床特点的是
A.伸舌时舌体歪向一侧B.舌体紧缩,不能伸长C.舌体震颤抖动,不能自主D.舌伸出口外,不即回缩或立即收回E.舌体软弱,无力伸缩,痿废不用吐弄舌的舌象特征是
A.等容收缩期B.快速射血期C.缓慢射血期D.等容舒张期E.快速充盈期心室容积快速增大是在
男,7岁。突发寒战,高热,右膝下方剧痛3天。查体T39.8℃,P86次/分,R25次/分,BP110/60mmHg。烦躁不安,右膝关节呈半屈曲状,拒动,右小腿近端皮温高,肿胀不明显,压痛阳性。早期确诊最可靠的是
当市话电缆不可避免与1kV~10kV电力线路合杆时,二者间净距不应小于(),与1kv电力线路合杆时,净距不应小于()。
人事行政是指国家人事管理机关对()所进行的管理。
2010年,某省广电实际总收入为145.83亿元,同比增长32.07%。其中,广告收入为67.08亿元,同比增长25.88%:有线网络收入为45.38亿元,同比增长26.35%;其他收入为33.37亿元,同比增长57.3%。2010年,该省广电收
与脂肪和蛋白质相比,糖氧化时需要的氧更少,因而是人体最经济的能源。( )
【B1】【B5】
最新回复
(
0
)