首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:对任意的χ,y∈R且χ≠y,有.
证明:对任意的χ,y∈R且χ≠y,有.
admin
2019-08-23
48
问题
证明:对任意的χ,y∈R且χ≠y,有
.
选项
答案
令f(t)=e
t
,因为f〞(t)=e
t
>0,所以函数f(t)=e
t
为凹函数. 根据凹函数的定义,对任意的χ,y∈R且χ≠y,有[*],即[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/wzA4777K
0
考研数学二
相关试题推荐
设线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=一k(k≠0),且β1=(一1,1,1)T,β2=(1,1,一1)T是该方程组的两个解,写出此方程组的通解.
设z=f[χ+φ(χ-y),y],其中f二阶连续可偏导,φ二阶可导,求.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
证明:当χ>0时,arctanχ+.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度为时(如图1一3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3。)
(1991年)如图2.8,χ轴上有一线密度为常数μ,长度为l的细杆,有一质量为m的质点到杆右端的距离为a,已知引力系数为k,则质点和细杆之间引力的大小为【】
随机试题
Themostvisiblevictimsofpollution,fish,areonlyalinkinachainfrommicroscopiclifetoman.
子宫内膜癌镜检分型是下列哪项
患者,男性,70岁,家居养老。3天未排便,社区护士应采取的正确措施是
多发性骨髓瘤患者特点有()。
金融监管国际化的进程如下:1975年2月,在瑞士巴塞尔成立了银行管理和监督实施委员会,简称巴塞尔银行监管委员会。1988年7月,巴塞尔银行监管委员会公布了《关于统一国际银行资本测量和资本标准的报告》,简称《巴塞尔资本协议》。1997年9月,巴塞尔银行
确定薪酬调查的范围,即确定()。
简谐横波在均匀介质中沿直线传播,P、Q是传播方向上相距10m的两质点,波先传到P点,当波传到Q开始计时,P、Q两质点的振动图象如图所示,则()。
Isn’titverykind______yourparentstodothatforus?
Recently,Istoppedbyaconveniencestoretogetanewspaperandabottleofdrink.Theyoungwomanatthecheck-outcountersa
盖闻王者莫高于周文,伯者莫高于齐桓,皆待贤人而成名。今天下贤者智能,岂特古之人乎?患在人主不交故也,士奚由进!今吾以天之灵、贤士大夫定有天下,以为一家,欲其长久,世世奉宗庙亡绝也。贤人已与我共平之矣而不与吾共安利之可乎贤士大夫有肯从我游者吾能尊显之。布告天
最新回复
(
0
)