首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=0,f”(0)>0.在曲线y=f(x)上任意一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距记为u,求.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=0,f”(0)>0.在曲线y=f(x)上任意一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距记为u,求.
admin
2018-12-21
100
问题
设f(x)具有二阶连续导数,f(0)=0,f
’
(0)=0,f
”
(0)>0.在曲线y=f(x)上任意一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距记为u,求
.
选项
答案
由于f
’
(0)=0及f
”
(0)﹥0,故存在x=0的一个去心邻域[*],使得当x∈[*]时,f
’
(x)≠0.过点(x,f(x))(x≠0)的切线方程为Y-f(x)=f
’
(x)(X-x). 令Y=0,得截距[*].从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/x8j4777K
0
考研数学二
相关试题推荐
(2000年)设函数S(χ)=∫0χ|cost|dt(1)当n为正整数,且nπ≤χ<(n+1)π时,证明2n≤S(χ)<2(n+1).(2)求
(1999年)计算
(2002年)位于曲线y=χe-χ(0≤χ<+∞)下方,χ轴上方的无界图形的面积是________.
(2009年)若f〞(χ)不变号,且曲线y=f(χ)在点(1,1)处的曲率圆为χ2+y2=2,则函数f(χ)在区间(1,2)内【】
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记则A=【】
(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】
(1996年)设函数f(χ)在区间(-δ,δ)内有定义,若当χ∈(-δ,δ)时,恒有|f(χ)|≤χ2,则χ=0必是f(χ)
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
随机试题
一只惊天动地的虫子迟子建我对虫子是不陌生的。小时候在菜园和森林中,见过形形色色的虫子。绿色的软绵绵的喜欢吊在杨树枝上的毛毛虫,爱在菜园中飞来飞去的有着漂亮外壳的花大
咳嗽肺阴亏耗证与肺痨肺阴亏损证的鉴别点在于有无( )。
患者,女,40岁。呕吐清水,胃部不适,食久乃吐,喜热畏寒,身倦,便溏,小便可,舌苔白,脉迟。治疗除取主穴外,还应加( )。
关于压片药料制颗粒目的的叙述,正确的有
关于家装的防火安全的说法,正确的有()。
下面的事件中可以导致承包商向业主索赔的是()、
(2012年)下列关于固定资产后续支出的表述中,正确的有()。
对企业制定的政策,在系统需求定义中,属于下列哪种内容?
CreativityEnvironmentI.WhatwedoincreativethinkingA.TheExplorer—ourroleforcollectingmaterialsandinformationB
Itisessentialforapolicemantobetrainedincriminallaw______.Whenmurdersandterroristattacksoccurthepolice_____
最新回复
(
0
)