设函数f(x,y)可微,又f(0,0)=0,f’x(0,0)=a,f’y(0,0)=b,且φ(t)=f[t,f(t,t2)],求φ’(0).

admin2018-08-23  30

问题 设函数f(x,y)可微,又f(0,0)=0,f’x(0,0)=a,f’y(0,0)=b,且φ(t)=f[t,f(t,t2)],求φ’(0).

选项

答案在φ(t)=f[t,f(t,t2)]中令u=t,v=f(t,t2),得 φ(t)=f(u,v), [*] 所以 φ’(0)=f’1(0,0)+f’2(0,0)·[f’1(0,0)+f’2(0,0)·2·0] =a+b(a+0)=a(1+b).

解析
转载请注明原文地址:https://kaotiyun.com/show/xPj4777K
0

最新回复(0)