首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B为3阶相似非零实矩阵,矩阵A=(αij)满足aij=Aij(i,j=1,2,3),Aij是aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A*+E可逆,方程组(B-E)x=0没有非零解.
设A、B为3阶相似非零实矩阵,矩阵A=(αij)满足aij=Aij(i,j=1,2,3),Aij是aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A*+E可逆,方程组(B-E)x=0没有非零解.
admin
2021-02-25
60
问题
设A、B为3阶相似非零实矩阵,矩阵A=(α
ij
)满足a
ij
=A
ij
(i,j=1,2,3),A
ij
是a
ij
的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A
*
+E可逆,方程组(B-E)x=0没有非零解.
选项
答案
由a
ij
=A
ij
(i,j=1,2,3)可知,A
*
=A
T
.于是 [*] 又因为A≠0,不妨假设a
11
≠0,所以 [*] 又由已知,A~B,所以A与B有相同的特征值,且|B|=|A|=1. 由|E+2B|=|E+3B|=0,可得B有特征值λ
1
=-1/2,λ
2
=-1/3. 设B的另一特征值为λ
3
,则有[*].所以A、B的特征值为λ
1
=-1/2,λ
2
=-1/3,λ
3
=6.于是矩阵A
*
+E=A
T
+E=A+E的特征值为λ
1
+1=1/2,λ
2
+1=2/3,λ
3
+1=7全不为0,故A
*
+E可逆. 显然B-E的特征值为λ
1
-1=-3/2,λ
2
-1=-4/3,λ
3
-1=5.所以B-E可逆,故方程组(B-E)x=0没有非零解.
解析
本题主要考查如何求抽象矩阵的特征值.再利用特征值的性质证其结论.
转载请注明原文地址:https://kaotiyun.com/show/xZ84777K
0
考研数学二
相关试题推荐
设n阶方阵A的,n个特征值全为0,则().
设x与y均大于0,且x≠y,证明:<1.
设A=,则下列矩阵中与A合同但不相似的是
下列矩阵中,正定矩阵是()
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
设f(x)在[a,b]上连续,在(a,b)内可导,且试证:对任意实数k,在(a,b)内存在一点ξ,使得
(1997年)已知且A2-AB=I,其中I是3阶单位矩阵。求矩阵B.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
对患者进行健康教育属于
对精神分裂症最具有诊断价值的症状是
A.1年B.2年C.3年D.4年E.5年药物临床研究被批准后应当在()内实施
依我国法律,保险人在下列哪些情况中可以解除合同?()。
初步选择估价方法的目的,是为了使后面进入搜集资料和实地查勘时能重复进行而力求精确和更详细。()
当无实际资料时,采用机械摊铺可供参考的沥青混凝土混合料松铺系数为()。
与出口方式相比,下列各项属于对外直接投资特点的是()。
在中国一些重要的标准为强制性标准,要求强制执行,并规定不符合强制性标准的产品,禁止生产、进口和()。
有人说:三峡水利枢纽工程是人类水利工程史上的奇迹,但如果没有工人的劳动的话,三峡工程只会永远停留在图纸上,这一观点体现了实践的哪一种性质
请根据下图所示网络结构回答下列问题。(1)填写路由器RG的路由表项[1]~[6]。(2)如果需要监听路由器RF和RG之间的所有流量,可以在该链路中串入一种设备,请写出这种设备的名称。(3)若要检测从Windows主机1
最新回复
(
0
)