首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. 求u(x,y)的一般表达式.
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. 求u(x,y)的一般表达式.
admin
2019-06-28
99
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某二元函数u(x,y)的全微分.
求u(x,y)的一般表达式.
选项
答案
由上题有,du=(xy
2
+y—ye
-x
)dx+(x一1+e
-x
+x
2
y)dy.求u(x,y)有多个方法. 方法一 凑微分法. [*] 所以u(x,y)=[*](xy)
2
+xy+ye
-x
一y+C,其中C为任意常数. 方法二 偏积分法.由 [*] 其中C
1
(y)为Y的任意可微函数.再由[*]得 x
2
y+x+e
-x
+C’
1
(y)=x一1+e
-x
+x
2
y, 于是C’
1
(y)=一1,C
1
(y)=一y+C.于是 u=[*](xy)
2
+xy+ye
-x
一y+C, 其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/y4V4777K
0
考研数学二
相关试题推荐
微分方程y’=1+x+y2+xy2的通解为_________。
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设f(x)在[a,b]上可导,f’(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明:∫axf(t)dt在(a,b)内恒为零。
求极限
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。求方程组(1)的一个基础解系;
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。利用上问的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明结论。
微分方程(y2+1)dx=y(y一2x)dy的通解是________.
将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形,三个图形的面积之和是否存在最小值?若存在,求出最小值.
已知A,B为三阶方阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵。若B=,求矩阵A。
设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
随机试题
提出语言遗传机制假设的是()
带下过多的主要发病机理错误的是
女性,30岁。患风心病二尖瓣狭窄合并关闭不全,心悸、气短、下肢水肿,每日口服地高辛0.25mg、氢氯噻嗪25mg,1个月后感恶心、呕吐。心电图示:窦性心律,心率68次/分,室性期前收缩二联律。治疗应()
芳香化湿药使用中应注意的是
下列管道中,除了强度试验和严密性试验以外,还要做泄漏性试验的有()。
关于竣工验收的说法中,正确的是()。
( )旨在使项目建设的决策和实施增值。
地理教学评价的功能包括:诊断功能、导向功能、__________等。
【21】【39】
EducationinMexicoCompulsoryeducationbeginsattheageofsix./Butmanyparentssendtheirchildrentonurseryschools
最新回复
(
0
)