首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. 求u(x,y)的一般表达式.
设f(x)具有一阶连续导数,f(0)=0,且表达式 [xy(1+y)一f(x)y]dx+[f(x)+x2y]dy 为某二元函数u(x,y)的全微分. 求u(x,y)的一般表达式.
admin
2019-06-28
77
问题
设f(x)具有一阶连续导数,f(0)=0,且表达式
[xy(1+y)一f(x)y]dx+[f(x)+x
2
y]dy
为某二元函数u(x,y)的全微分.
求u(x,y)的一般表达式.
选项
答案
由上题有,du=(xy
2
+y—ye
-x
)dx+(x一1+e
-x
+x
2
y)dy.求u(x,y)有多个方法. 方法一 凑微分法. [*] 所以u(x,y)=[*](xy)
2
+xy+ye
-x
一y+C,其中C为任意常数. 方法二 偏积分法.由 [*] 其中C
1
(y)为Y的任意可微函数.再由[*]得 x
2
y+x+e
-x
+C’
1
(y)=x一1+e
-x
+x
2
y, 于是C’
1
(y)=一1,C
1
(y)=一y+C.于是 u=[*](xy)
2
+xy+ye
-x
一y+C, 其中C为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/y4V4777K
0
考研数学二
相关试题推荐
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设A,B均为n阶可逆矩阵,且(A+B)*=E,则(E+BA-1)-1=()
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0。证明:向量组α,Aα,…,Ak-1α是线性无关的。
微分方程(1一xx)y—xy’=0满足初值条件y(1)=1的特解是____________.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an=f(k)-∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在。
求初值问题的解。
∫χ2arctanχdχ.
随机试题
简述古埃及阿蒙霍特普四世(埃赫那吞)宗教改革的内容及其影响。(南京大学1997年世界古代中世纪史真题)
风眩常见证型有
女,42岁。间断腹泻、脓血便5年,粪便病原体培养阴性,广谱抗生素治疗无效。结肠镜检查:乙状结肠、直肠黏膜广泛弥漫充血、水肿、散在点状糜烂。最可能的诊断是
属于全合成的抗结核药是
国务院《企业职工伤亡事故报告和处理规定》规定,企业负责人接到()事故报告后,应当立即报告企业主管部门和企业所在地有关部门。
标志标明“封存”字样的计量器具,所处的状态是()。
下列各项中,属于影响未分配利润金额的有()。
生产物流的流程主要有()。
职务发明,是指企业、事业单位、社会团体、国家机关的工作人员执行本单位的任务或者主要是利用本单位的物质条件所完成的职务发明创造。根据上述定义,下列属于职务发明的是()。
StatisticsI.Statisticsin【T1】________A.Irregularitiesintheballoting:thethird-partycandidatePatBuchanangot【T2】____
最新回复
(
0
)