首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2019-01-19
96
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
n,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中C
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=0,因此 BA
T
=(AB
T
)
T
=0, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩为n,等于2n与(1)的解空间的维数的差,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/yBP4777K
0
考研数学三
相关试题推荐
设随机变量X的密度为f(χ)=,-∞<χ<+∞,求E[min(1,|X|)].
已知二次型f(χ1,χ2,χ3)=5χ12+5χ22+cχ32-2χ1χ2+6χ1χ3-6χ2χ3的秩为2.(1)求参数c及f所对应矩阵的特征值;(2)指出方程f(χ1,χ2,χ3)=1表示何种二次曲面.
设从一总体中抽得样本观测值为:5,3,4,5,6,2,5,3.试写出其样本经验分布函数F*(χ).
设总体X的分布函数为其中参数θ(0<θ<1)未知.X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.求参数θ的矩估计量;
曲线直线y=2及y轴所围的平面图形绕x轴旋转一周所成的旋转体体积为___________.
试利用变量代换x=cost将微分方程化为关于y,t的方程,并求原方程的通解.
求I=(|x|+|y|)dxdy,其中D是由曲线xy=2,直线y=x一1及y=x+1所围成的区域.
计算二重积分I=x[1+yf(x2+y2)]dxdy,其中积分区域D=((x,y)|y=x3,y=1,x=一1}.
设A为n阶实对称矩阵,其秩为r(A)=r.(1)证明:A的非零特征值的个数必为r(A)=r.(2)举一个三阶矩阵说明对非对称矩阵上述命题不正确.
将三封信随机地投入编号为1,2,3,4的四个邮筒,记X为1号邮筒内信的数口,Y为有信的邮筒数目,求:(X,Y)的联合概率分布;
随机试题
焊料焊接法需加蜡固定,加蜡的作用不包括哪项
《中华人民共和国建筑法》对施工现场的环境保护和安全有何规定?
开发商成本利润率是开发经营期利润率,且年成本利润率不等于成本利润率除以开发经营期的年数。()[2004年考题]
()的成员国必须对非成员国采用共同的对外关税和配额。
一个人的吸烟行为是()。
《巴塞尔新资本协议》要求实施内部评级法初级法的商业银行()。
金融企业应当同时设立风险管理委员会和具体的业务风险管理部门,这体现了金融风险管理的()。
Competitionbreedsexcellence.Askanyonewhopaysattentiontothecarindustryandtheywilltellyouthatthefamily-sedanse
(2015年真题)空姐甲长期在国外购买化妆品,经无申报通道携带入境,交由其表妹在网店销售,偷逃高额海关关税,获利数额巨大。甲的行为应认定为()。
若有以下程序#include<stdio.h>main(){ints=0,n;for(n=0;n<4;n++){switch(n){defa
最新回复
(
0
)