首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2019-01-19
53
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
n,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
11
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c
n
(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中C
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=0,因此 BA
T
=(AB
T
)
T
=0, 可见A的n个行向量的转置为(2)的n个解向量。 由于B的秩为n,所以(2)的解空间的维数为2n—r(B)=2n一n=n,又因为A的秩为n,等于2n与(1)的解空间的维数的差,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/yBP4777K
0
考研数学三
相关试题推荐
设矩阵A、B的行数都是m,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
设随机变量(X,Y)的概率密度为问X与Y是否独立?|X|与|Y|是否独立?
已知3阶方阵A的行列式|A|=2,方阵B=其中Aij为A的(i,j)元素的代数余子式,求AB.
已知线性方程组=0有非零解,而且矩阵A=是正定矩阵.(1)求常数a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T为3维实向量.
设X1,…,Xn为相互独立的随机变量,Sn=X1+…+Xn,则根据列维一林德贝格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,…,Xn【】
设二维随机变量(X,Y)在矩形域D={x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记(Ⅰ)求U和V的联合分布;(Ⅱ)求概率P{U>0|V=0);(Ⅲ)求U和V的相关系数.
设f(x)是满足=一1的连续函数,且当x→0时,∫0xf(t)dt是与xn同阶的无穷小量,求正整数n.
计算二重积分I=||x+y|一2|dσ,其中积分区域为D={(x,y)|0≤x≤2,一2≤y≤2}.
求二重积分I=,其中积分区域。是由曲线y=—a+(a>0)和直线y=一x所围成的平面区域.
设α1,α2,α3均为3维列向量,记矩阵A=[一α1,2α2,α3],B=[α1+α2,α1—4α3,α2+2α3],如果行列式|A|=一2,则行列式|B|=__________.
随机试题
不含消化酶的消化液是
小儿食指络脉色青,主
系统性红斑狼疮患者皮肤护理,下列哪项不妥()
下列哪一项是诊断侵袭性葡萄胎的主要依据
求助者:我是家里的老二,有一个姐姐一个妹妹。我跟父母的感情非常好,一直和他们住在一起……母亲去世后,姐姐每天都……心理咨询师:您刚才说,母亲去世后,为了让父亲吃的顺口,您姐姐每天到家里给父亲做饭;您每天晚上陪老人,直到他晚上入睡……实际上,如果不
2015年全国共建立社会捐助工作站、点和慈善超市3.0万个,比上一年减少0.2万个,其中:慈善超市9654个,同比下降5.1%,全年共接收社会捐赠款654.5亿元,其中:民政部门接收社会各界捐款44.2亿元,各类社会组织接收捐款610.3亿元。全年民政部门
【《社会契约论》】北京大学2000年欧美近代史真题;西北大学2011年思想史复试真题
一家濒临倒闭的食品公司为了起死回生,决定裁员。三种人被列入了裁员名单:一是清洁工,二是司机,三是仓管人员。经理找他们谈话,说明了裁员的意图。清洁工说:“我们很重要,如果没有我们打扫卫生,哪有干净整洁的工作环境?大家怎么能全身心投入工作?”司机说:“我们很重
•Lookatthetablebelow.•Someinformationismissing.•Youwillhearatelephoneconversation.•Foreachquestion16-22,fill
【B1】【B5】
最新回复
(
0
)