首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有|f(x1)-f(x2)|<
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于x1,x2∈[0,1],有|f(x1)-f(x2)|<
admin
2017-07-28
57
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于
x
1
,x
2
∈[0,1],有|f(x
1
)-f(x
2
)|<
选项
答案
联系f(x
1
)一f(x
2
)与f’(x)的是拉格朗日中值定理.不妨设0≤x
1
≤x
2
≤1.分两种情形:. 1)若x
2
一x
1
<[*]直接用拉格朗日中值定理得 |f(x
1
)一f(x
2
)|=|f’(ξ)(x
2
一x
1
)|=|f’(ξ)||x
2
一x
1
|<[*] 2)若x
2
一x
1
≥[*]当0<x
1
<x
2
<1时,利用条件f(0)=f(1)分别在[0,x
1
]与[x
2
,1]上用拉格朗日中值定理知存在ξ∈(0,x
1
),η∈(x
2
,1)使得 |f(x
1
)一f(x
2
)|=|[f(x
1
)一f(0)]一[f(x
2
)一f(1)]| ≤|f(x
1
)一f(0)|+|f(1)一f(x
2
)| =|f’(ξ)x
1
|+|f’(η)(1一x
2
)| <x
1
+(1一x
2
)=1一(x
2
一x
1
)≤[*] ①当x
1
=0且x
2
≥[*]时,有 |f(x
1
)-f(x
2
)|=|f(0)一f(x
2
)|=|f(1)一f(x
2
)|=|f’(η)(1一x
2
)|<[*] ②当[*]且x
2
=1时,同样有 |f(x
1
)一f(x
2
)|=|f(x
1
)一f(1)|=|f(x
1
)一f(0)|=|f’(ξ)(x
1
一0)|<[*] 因此对于任何x
1
,x
2
∈[0,1]总有 |f(x
1
)一f(x
2
)|<[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yOu4777K
0
考研数学一
相关试题推荐
微分方程y’’+y=-2x的通解为________.
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设,其中f为连续的奇函数,D是由y=-x3,x=1,y=1所围成的平面闭域,则k等于().
(1998年试题,十四)从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?附表:标准正态分布数值表:
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2001年试题,七)设y=f(x)在(一1,1)内具有二阶连续导数且f’’(x)≠0,试证:
求f(x,y,z)=2x+2y—z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
一半径为R的球沉入水中,球面顶部正好与水面相切,球的密度为1,求将球从水中取出所做的功.
设L是圆周(x一a)2+(y一a)2=1的逆时针方向,f(x)恒正且连续,试证
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上.任意一点P(x,y)作该曲线的切线及到z轴的垂线,上述两直线与z轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S
随机试题
经营决策系统内部可以分为若干子系统,这些子系统包括
Aα受体Bβ1受体Cβ2受体DM受体EN受体导致支气管平滑肌舒张的肾上腺素能受体是
急腹症患者腹透见膈下游离气体,提示腹内的病变是
患者,男,26岁,鼻渊头痛,嗅觉无味,浊涕长流,治疗首选药物为()
下列哪些是快速接地开关的选择依据条件?
在人寿保险的定价方法中,( )是将保费与保险给付和费用的差额用利率积累到未来某点的方法。
你是某景区负责人,天降暴雨引发泥石流,大石块落下砸伤很多人,请问你怎么办?
我国的全民义务植树节是每年的( )。
“风来花自舞,春到鸟能言。”这句话用的修辞格是__________。(兰州大学2015)
文档“word素材.docx”是一篇从互联网上获取的文字资料,打开该文档并按下列要求进行排版及保存操作:在封面页与正文之间插入目录,目录要求包含标题第1一3级及对应页号。目录单独占用一页,且无须分栏。
最新回复
(
0
)