首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)=一1。证明: f"(x)≥8。
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,f(x)=一1。证明: f"(x)≥8。
admin
2019-02-26
56
问题
设f(x)在[0,1]上具有二阶连续导数,且f(0)=f(1)=0,
f(x)=一1。证明:
f"(x)≥8。
选项
答案
设f(c)=[*]f(x)=一1,因为f(0)=f(1)=0,则f(c)是f(x)在区间(0,1)内的极小值,故f’(c)=0,将f(x)按(x一c)的幂展开成二次泰勒多项式,即 f(x)=f(c)+f’(c)(x一c)+[*](x一c)
2
, 在上式中分别令x=0,x=1,得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yT04777K
0
考研数学一
相关试题推荐
设函数u=u(x,y)满足及u(x,2x)=x,u’1(x,2x)=x2,u有二阶连续偏导数,则u’’11(x,2x)=()
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(n);④若r(
已知四维向量组α1,α2,α3,α4线性无关,且向量β1=α1+α3+α4,β2=α2-α4,β3=α3+α4,β4=α2+α3,β5=2α1+α2+α3.则r(β1,β2,β3,β4,β5)=()
设α1,α2,β1,β2均是三维向量,且α1,α2线性无关,β1,β2线性无关,证明存在非零向量γ,使得γ既可由α1,α2线性表出,又可由β1,β2线性表出。当α1=,α2=,β1=,β2=时,求出所有的向量γ。
设A为三阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第三行得到单位矩阵,记P1=,P2=,则A=()
(1998年)计算其中∑为下半球面的上侧,a为大于零的常数。
(2006年)设区域D={(x,y)|x2+y2≤1,x≥0),计算二重积分I=
(2013年)已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的三个解,则该方程的通解为y=____________。
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛。
一电路使用某种电阻一只,另外35只备用,若一只损坏,立即使用另一只更换,直到用完所有备用电阻为止.设电阻使用寿命服从参数为λ=0.01的指数分布,用X表示36只电阻的使用总寿命,用中心极限定理估计P(X>4200)(Ф(1)=0.8413,Ф(2)=0.9
随机试题
产生肾素的细胞是肾脏的
下列关于休克的叙述,哪项是正确的
FAB分型中,急性白血病骨髓中原始细胞应
A.普郎尼克B.苄泽C.卖泽D.吐温E.司盘脂肪酸山梨坦的商品名是
乡(镇)土地利用总体规划可以由()人民政府批准。
依据《烟花爆竹安全管理条例》的规定,本条例所称烟花爆竹,是指烟花爆竹制品和用于生产烟花爆竹的民用()、烟火药、引火线等物品。
印度著名的“旅游金三角”指的城市是()。
改革创新包括理论创新、制度创新、科技创新、文化创新以及其他方面的创新。在所有的创新中,对社会发展和变革起到先导作用的是
若有定义typedefint*T;T*a[20];则以下与上述定义中a类型完全相同的是
Weallhaveproblemsandbarriersthatblockourprogressorpreventusfrommovingintonewareas.Ourproblemsmightincludet
最新回复
(
0
)