首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2016-09-12
92
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f’’(x)+f(x)=x
2
,解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1,所以f(x)=2cosx+sinx+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y-]dx+(-2sinx+cosx+2x+z
2
y)dy=0,整理得(xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0,即[*] 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/ymt4777K
0
考研数学二
相关试题推荐
若函数y=f(x)与y=g(x)互为反函数,且均在(-∞,+∞)上存在二阶导数,若f’(x)>0,f"(x)
罗尔定理对y=lnsinx在上的正确性。
求曲线及r2=cos2θ所围成图形的公共部分的面积。
设函数f(x)与g(x)在[0,1]上连续,且f(x)≤g(x),则对任何c∈(0,1)________。
证明:奇次多项式p(x)=a0x2n+1+a1x2n+….+a2n+1(a0≠0)至少存在一个零点。
设(n=1,2,…)证明{xn}收敛,并求极限。
若f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:在(a,b)内至少存在一点ε,使得f(ε)=ε.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’x(x0,y0),f’y(x0,y0)存在是f(x,y)在该点连续的________。
微分方程y"-y=ex+1的一个特解应具有形式(式中a,b为常数)________。
数列的最大项为________.
随机试题
福利国家的最初尝试起始于()
失笑散的功用是
喹诺酮类药物的抗菌机制是()。
患者上前牙龋充填后三天出现自发痛,不敢咬合。查:充填体,叩(++),松动I度,牙龈轻红肿,冷热测无反应,该患牙三天前处理中的问题最可能是
诊断自主性功能亢进性甲状腺腺瘤最佳的甲状腺检查是
监理工程师对施工图审核的重点是( )。
《危险性较大的分部分项工程安全管理办法》规定,施工单位应当在危险性较大的分部分项工程施工前编制专项方案。下述选项中属于专项方案施工安全保证措施的是()。
某企业收同货款25000元存入银行,记账凭证的记录为:“借:银行存款25800,贷:其他应收款25800”,并已登记入账。更正时需要做的会计分录包括()
城市社区与农村社区的主要区别。(中山大学2011年研)
根据婚姻法的明确规定,下列哪些人之间禁止结婚?()
最新回复
(
0
)