首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2016-09-12
115
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)-f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f’’(x)+f(x)=x
2
,解得f(x)=C
1
cosx+C
2
sinx+x
2
-2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1,所以f(x)=2cosx+sinx+x
2
-2. 原方程为[xy
2
-(2cosx+sinx)y+2y-]dx+(-2sinx+cosx+2x+z
2
y)dy=0,整理得(xy
2
dx+x
2
ydy)+2(ydx+xdy)-2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0,即[*] 原方程的通解为[*]x
2
y
2
+2xy-2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/ymt4777K
0
考研数学二
相关试题推荐
讨论曲线y=4Inx+k与y=4x+In4x的交点个数.
设函数f(x)在[a,b]上满足罗尔定理的条件,且f(x)不恒等于常数,证明:在(a,b)内至少存在一点ξ,使f’(ξ)>0.
设(a,b为常数且b>0)问a,b满足什么条件,才能使:f(x)在[0,1]上连续。
设f(x)在[0,1]上可导,F(x)=∫0xt2f(t)dt,且F(1)=f(1),证明:在(0,1)内至少存在一点ξ,使得.
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为________。
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为________。
下列广义积分收敛的是________。
设D是xOy平面上以(1,1)(-1,1)和(-1,-1)为顶点的三角形区域,D1是D在第一象限的部分,则(xy+cosx·siny)dxdy=________。
求微分方程(x2-1)dy+(2xy-cosx)dx=0满足初始条件y|x=0=1的特解。
随机试题
简述刷涂操作特点。
氟牙症的临床特征是釉质发育不全的临床特征是
男,56岁。突发言语不清、跌倒在地。小便失禁,无肢体抽搐。急送至医院急诊室。体检:昏迷,瞳孔左侧6mm,右侧3mm,血压180/110mmHg,心率65次/min,律齐。最可能的诊断为
下列说法正确的是()。
港航工程混凝土的配制强度公式为:fcu,o=fcu,k+1.645σ式中fcu,o为()。
从事生产、经营的纳税人被宣告破产,按照规定应办理工商注销登记的,应当首先向工商行政管理机关注销登记,然后向原税务登记机关注销登记。 ( )
行政职权是行政主体实施国家行政管理活动的资格及权能,它不包括()。
如果企业定额管理基础好,各月末在产品数量变化不大,则该企业适宜采用的完工产品和在产品成本分配方法是()。
本票的持票人未按照规定期限提示本票的,丧失对出票人的追索权。()
下列选项中,不属于可以解聘教师的法定事由的是()。
最新回复
(
0
)