首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=。 (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵。
设n阶矩阵A=。 (Ⅰ)求A的特征值和特征向量; (Ⅱ)求可逆矩阵P,使得P-1AP为对角矩阵。
admin
2018-04-18
50
问题
设n阶矩阵A=
。
(Ⅰ)求A的特征值和特征向量;
(Ⅱ)求可逆矩阵P,使得P
-1
AP为对角矩阵。
选项
答案
(Ⅰ)①当b≠0时, [*] =[λ一1一(n一1)b-][λ一(1—b)]
n-1
, 得A的特征值为λ
1
=1+(n—1)b,λ
2
=…=λ
n
=1一b。 对λ
1
=1+(n—1)b,有 [*] 解得ξ
1
=(1,1,1,…,1)
T
,所以A的属于λ
1
的全部特征向量为kξ
1
=k(1,1,1,…,1)
T
(k为任意不为零的常数)。 对λ
2
=1一b,有 λ
2
E—A=[*], 得基础解系为 ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
3
=(1,0,0,…,0,一1)
T
。 故A的属于λ
1
的全部特征向量为k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
(k
1
,k
2
,…,k
n
是不全为零的常数)。 ②当b=0时, |λE一A|=[*]=(λ一1)
n
, 特征值为λ
1
=…=λ
n
=1,任意非零列向量均为特征向量。 (Ⅱ)①当b≠0时,A有n个线性无关的特征向量,令P=(ξ
1
,ξ
2
,…,ξ
n
),则 P
-1
AP=[*]。 ②当b=0时,A=E,对任意可逆矩阵P,均有P
-1
AP=E。
解析
转载请注明原文地址:https://kaotiyun.com/show/ypX4777K
0
考研数学三
相关试题推荐
n维向量α=(1/2,0….,0,1/2)T,A=E一ααT,β=(1,1….,1)T,则Aβ的长度为
设f(x)是(一∞,+∞)上连续的偶函数,且|f(x)|≤M当x∈(一∞,+∞)时成立,则F(x)=∫0xte一t2f(t)dt是(一∞,+∞)上的
设a1=2,(n=1,2,…),证明:存在并求其极限值.
设f(x)=arcsinx,ξ为f(x)在[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
一实习生用一台机器接连生产了三个同种零件,第i个零件是不合格品的概率(i=1,2,3),以X表示三个零件中合格品的个数,求X的分布律.
设f(x)是以T为周期的连续函数,且F(x)=∫0xf(t)dt+bx也是以T为周期的连续函数,则b=________.
假设随机事件A与B相互独立,,求a的值.
随机试题
蛛形纲动物的主要特征是
经前连合的横断面上,位居断面中央的是
用于胃肠道造影的对比剂是
属于三次文献的是()
根据《劳动法》的规定,下列不属于预告解除劳动合同的情形有()。
欧洲中世纪的宗教神学课程和工业革命后的以自然科学为基础的课程属于课程类别中的()。
夜阑卧听风吹雨,_______。(陆游《十一月四日风雨大作》)
幼儿科学学习的核心是()
【北京第二外国语学院2013翻译硕士】某高校召开体育运动大会。请以运动员代表的身份,写一篇讲话稿。要求:1、格式完整、正确2、书写工整3、不少于450字
有以下程序:#include<stdio.h>voidsum(int*a){a[0]=a[1];}main(){intaa[10]={1,2,3,4,5,6,7,8,9,10},i;
最新回复
(
0
)