首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明λ也是n阶矩阵BA的特征值.
设λ≠0是m阶矩阵Am×nBn×m的特征值,证明λ也是n阶矩阵BA的特征值.
admin
2020-11-13
38
问题
设λ≠0是m阶矩阵A
m×n
B
n×m
的特征值,证明λ也是n阶矩阵BA的特征值.
选项
答案
根据特征值的定义证明. 设λ是矩阵AB的任一非零特征值,ζ是对应于它的特征向量.即有 ABζ=ζ. ① 用矩阵B左乘上式两边,得(BA)ζ=B(ABζ)=Bλζ=λ(Bζ), 若Bζ≠0,则由特征值定义知,λ为BA的特征值.下面证明Bζ≠0.事实上, 由λ≠0,特征向量ζ≠0,有λζ≠0,再由①式得.ABζ≠0,因此Bζ≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/yxx4777K
0
考研数学三
相关试题推荐
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
(98年)设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:(1)A2;(2)矩阵A的特征值和特征向量.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设n阶矩阵则|A|=_________.
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).证明
随机试题
牡蛎可加工成淡菜、蚝豉、蚝油等制品。()
A.无痛性全程肉眼血尿B.终末血尿伴膀胱刺激征C.初始血尿D.疼痛伴血尿泌尿系结核血尿特点是
下颌向前运动时,髁突的运动是
商务部根据中国4家公司的申请并经调查公布了反倾销调查的终裁决定,认定从A国进口苯酚存在倾销,有关公司倾销幅度为10%—120%,决定自2004年2月1日起,对A国甲公司征收10%、乙公司征收120%的反倾销税,期限均为5年。下列哪些说法是不正确的?(
以下哪些是重新购建价格?()
企业提取盈余公积业务所涉及的会计核算内容是()。
企业为使项目完全达到设计生产能力,开展经营而投入的全部现实资金是()。
采用顺序分配法分配辅助生产费用时,应按辅助生产车间受益多少顺序排列,受益少的排列在先,先将费用分配出去,受益多的排列在后,后将费用分配出去。()
接团前,地陪应与旅行社()核实旅游团的用房情况是否与旅游接待计划相符。
下列对儿童发育迟缓与体重不足表述正确的是()。
最新回复
(
0
)