首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2022-04-02
67
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0, 所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而 A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,……,α
n
线性无关,所以α
2
,……,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,……,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示, 故r(A)=r([*])=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/z1R4777K
0
考研数学三
相关试题推荐
设A,B均为四阶方阵,r(A)=3,r(B)=4,其伴随矩阵分别为A*,B*,则r(A*B*)=___________.
与矩阵A=合同的矩阵是()
设有矩阵Am×n,Bn×m,已知En一AB可逆,证明:En—BA可逆,且(En—BA)-1=En+B(Em一AB)-1A.
已知线性方程组有无穷多解,求a,b的值并求其通解。
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A2;
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.求方程组(I)的一个基础解系;
已知A可对角化,求可逆矩阵P及对角矩阵,使P-1AP=A
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
随机试题
Dr.BeatriceHahnoftheUniversityofAlabamaatBirminghamannouncedthatshe’dlearnedtheoriginsofHIV-1,thevirusrespo
感染性休克应用皮质激素的作用是
对下列抗真菌药物的描述不正确的是()
下列哪项应考虑癌性胸水?()
承包商应当按照合同约定的方法和时间,向监理(业主)提交已完工程量的报告。监理(业主)接到报告后()天内核实已完工程量,如未及时核实完,则承包商报告中的工程量即视为被确认,作为工程价款支付的依据。双方合同另有约定的,按合同执行。
切应力互等定理适用情况是()。
干粉灭火系统管道验收时,公称直径为50mm的管道,其支、吊架的最大间距为()
【真题(初级)】下列各项中属于有效汇票必须记载的是()。
期货交易内幕信息知情人员的下列行为可能构成内幕交易、泄露内幕信息罪的是( )。
Althoughthelifewasveryharsh,thedoctorremainedontheislandforthereasonofthepeople.
最新回复
(
0
)