首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2022-04-02
39
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0, 所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而 A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,……,α
n
线性无关,所以α
2
,……,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,……,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示, 故r(A)=r([*])=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/z1R4777K
0
考研数学三
相关试题推荐
与矩阵A=合同的矩阵是()
在区间[0,π]上随机取两个数X与Y,则概率P{cos(X+Y)<0)=__________.
已知a1=(-1,1,a,4)T,a2=(-2,1,5,a)T,a3=(a,2,10.1)T是四阶方阵A的属于三个不同特征值的特征向量,则a的取值为().
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。(Ⅰ)证明矩阵A能相似于对角矩阵;(Ⅱ)若α=(0,-1,1)T,β=(1,0,-1)T,求矩阵A。
已知方程组有解,证明方程组无解.
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
已知A可对角化,求可逆矩阵P及对角矩阵,使P-1AP=A
设四元齐次线性方程组(I)为且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为α1=[2,-1,a+2,1]T,α2=[-1,2,4,a+8]T.当a为何值时,方程组(I)与(Ⅱ)有非零公共解?在有非零公共解时,求出
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
随机试题
复合字符
如何理解服务贸易的经济一体化?
合成血红素的原料有
A.茵陈蒿汤B.大柴胡汤C.黄芪建中汤D.茵陈五苓散合甘露消毒丹E.柴胡疏肝散阳黄热重于湿证的治疗方剂
证券公司进行自营买卖证券时,其交易方式可以在法规范围内依( )自主选择。
失业变动与GDP变动之间的数景关系可以用()来描述。
行政监察机关对公安机关及其人民警察的监督,属于()。
在近代法制史上,以判例和解释例作为法律渊源的政权有()。
What’sthemaintopicofthetalk?
Darknessdoesn’ttroublecats,fortheycansee______.
最新回复
(
0
)