首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x,y)连续,则二次积分=( )
设函数f(x,y)连续,则二次积分=( )
admin
2019-12-24
78
问题
设函数f(x,y)连续,则二次积分
=( )
选项
A、
B、
C、
D、
答案
B
解析
根据已知可知积分区域为D={(x,y)|π/2≤x≤π,sinx≤y≤1},据此画出积分区域的图形如图所示:
在区域D中,最高点纵坐标为y=1,最低点纵坐标为y=0,左边界方程为x=π-arcsiny,右边界方程为x=π,因此
本题考查二重积分的积分次序的转化,一般这种题型需要结合积分区域的图形来解答。
转载请注明原文地址:https://kaotiyun.com/show/zhD4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数的指数分布,令Y=min(X,2),求随机变量Y的分布函数F(y).
设随机变量X的概率密度为f(x)=试求:(I)常数C;(Ⅱ)概率(Ⅲ)X的分布函数.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
构造非齐次方程组,使得其通解为(1,0,0,1)T+c1(1,1,0,一1)T+c2(0,2,1,1)T,c1,c2任意.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知两个线性方程组同解,求m,n,t.
A,B都是n阶矩阵,并且B和E+AB都可逆,证明:B(E+AB)-1B-1=E—B(E+AB)-1A.
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和一1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;(2)设A,B为n阶方阵,|B|≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分
设A,B为同阶方阵,则A与B相似的充分条件是()
随机试题
现场干预试验必须具备哪些基本要素
蟾酥的性状特征有()
控释膜保护膜
“应收票据”项目应根据“应收票据”科目的期末余额填列。()
以下不属于个别督导的技巧是()。
试论缔约过失责任。
吉尼斯世界纪录和趣味有关,也和无聊有关。27个法国人用牙签搭建了微型的埃菲尔铁塔,一个美国人收集了600余双匡威运动鞋,一个古巴人做出了世界上最长的雪茄。吉尼斯就是无聊大观园,没有想不到,也不存在做不到。但太无聊的纪录连吉尼斯也会望而生畏,有人注册了互联网
材料1建设社会主义现代化国家、实现中华民族伟大复兴,是我们党孜孜以求的宏伟目标。自成立以来,我们党就团结带领人民为此进行不懈奋斗。随着改革开放逐步深化,我们党对制度建设的认识越来越深入。1980年,邓小平同志在总结“文化大革命”的教训时就指出:“
办事员小李需要整理一份有关高新技术企业的政策文件呈送给总经理查阅。参照“示例1.jpg”“示例2.jpg”,利用考生文件夹下提供的相关素材,按下列要求帮助小李完成文档的编排:在标题段落“附件1:国家重点支持的高新技术领域”的下方插入以图标方式显示的文档
【B1】【B12】
最新回复
(
0
)