首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组 问:(1)a,b为何值时,方程组有唯一解; (2)a,b为何值时,方程组无解; (3)a,n为何值时,方程组有无穷多解,并求其通解.
设方程组 问:(1)a,b为何值时,方程组有唯一解; (2)a,b为何值时,方程组无解; (3)a,n为何值时,方程组有无穷多解,并求其通解.
admin
2018-09-25
40
问题
设方程组
问:(1)a,b为何值时,方程组有唯一解;
(2)a,b为何值时,方程组无解;
(3)a,n为何值时,方程组有无穷多解,并求其通解.
选项
答案
设方程组 [*] (1)当r(A)=r([A|b])=5即a-7≠0,a-1≠0,a≠1且a≠7时方程组有唯一解. (2)当a=1,b≠2时或a=7,b≠8时均有r(A)=4≠r([A|b])=5,方程组无解. (3)当r(A)=r([A|b])<5即a=1,b=2时有r(A)=r([A|b])=4<5,方程组有无穷多解. [*] k
1
为任意常数. 当a=7,b=8时r(A)=r([A|b])=4<5有无穷多解. [*] k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/zlg4777K
0
考研数学一
相关试题推荐
设一批零件的长度服从正态分布N(μ,σ2),其中σ2已知,μ未知.现从中随机抽取n个零件,测得样本均值,则当置信度为0.90时,判断μ是否大于μ0的接受条件为(ua满足dt=α)
已知A,A—E都是n阶实对称正定矩阵,证明E—A-1是正定矩阵.
已知A是n阶可逆矩阵,证明ATA是对称、正定矩阵.
设A,B均是n阶正定矩阵,判断A+B的正定性.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
已知A是n阶对称矩阵,且A可逆,如(A—B)2=E,化简(E+A-1BT)T(E一BA-1)-1.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
随机试题
患者主诉左上第一磨牙有龋洞和冷热食痛,医生作温度测验时应
导尿是针对尿潴留最简单、最常用的方法。()
( )是指资产按照现在购买相同或者相似资产所需支付的现金或者现金等价物的金额计量。负债按照现在偿付该项债务所需支付的现金或者现金等价物的金额计量。
洁净厂房每一生产层、每一防火分区或每一洁净区的安全出口的数量均不应少于两个,但如果洁净厂房符合()时,可设置一个安全出口。
对于社会公众股的投资者来说,目前两个证券交易所上市公司现金红利发放日距股权登记日的天数()。
根据《中华人民共和国立法法》和相关法律规定,下列机构拥有规章的立法权的是:
按照国际电话电报咨询委员会CCITT的定义,(12)属于表现媒体。
Thewordconservationhasathriftymeaning.Toconserveistosaveandprotect,toleavewhatweourselvesenjoyinsuchgoodc
TheSkillsRequiredtoGetaJobI.Academicskills:【T1】______【T1】______1.Communicationskills—Understandandspeakthelang
Fromthehealthpointofviewwearelivinginamarvelousage.Weareimmunizedfrombirthagainstmanyofthemostdangerousd
最新回复
(
0
)