首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3—2x2x3. ①求f(x1,x2,x3)的矩阵的特征值. ②如果f(x1,x2,x3)的规范形为y12+y22,求a.
admin
2017-08-07
61
问题
二次型f(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a一1)x
3
2
+2x
1
x
3
—2x
2
x
3
.
①求f(x
1
,x
2
,x
3
)的矩阵的特征值.
②如果f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,求a.
选项
答案
①f(x
1
,x
2
,x
3
)的矩阵为 [*] 求出B的特征多项式|λE一B|=λ
3
+λ
2
一2λ=λ(λ+2)(λ一1),B的特征值为一2,0,1,于是A的特征值为a一2,a,a+1. ②因为f(x
1
,x
2
,x
3
)的规范形为y
1
2
+y
2
2
,所以A的正惯性指数为2,负惯性指数为0,于是A的特征值2个正,1个0,因此a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/zor4777K
0
考研数学一
相关试题推荐
(2003年试题,六)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而做功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0),汽锤第一次击打将桩打进地下am,根据设计方案,要求汽锤每次击打桩时所做的功
(2011年试题,三)设随机变量X与y的概率分布本别为且P(X2=Y2)=1求二维随机变量(X,Y)的概率分布;
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
(2009年试题,21)设二次型f(x1,x2,x3)=a22+a22+(a一1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
(2005年试题,20)已知二次型f(x1,x2,x3)=(1—a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
(1999年试题,一)设n阶矩阵A的元素全为1,则A的n个特征值是_________________.
(2003年试题,十二)设总体X的概率密度为其中θ>0是未知参数,从总体x中抽取简单随机样本X1,X2,…,Xn,记θ=min(X1,X2,…,Xn)如果用作为θ的估计量,讨论它是否具有无偏性.
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次.现在我们若重复他的试验,试求:要想使我们试验正面出现的频率与概率之差的绝对值不超过皮尔逊试验偏差的概率小于20%,现在我们应最多试验多少次?
假设X1,X2,…,Xn为来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4),证明:当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
随机试题
下列关于乳酸脱氢酶的叙述,错误的是
浅Ⅱ度烧伤的损伤范围达
混合爆炸气体的爆炸极限值不是一个物理常数,它随条件的变化而变化。通常对其产生影响的因素包括()。
埋设后的单盘直埋光缆,金属外护层对地绝缘()维护指标不应低于2MΩ。
在word的编辑状态,若要对当前文档中设置字符间距,可以使用格式菜单中的段落命令。()
税收的基本特征有()。
下列事项中,可能改变企业资本结构的是()。
某市阀门公司在生产过程中排出的污水致孙某经营的鱼塘受损。为此,该市环保局经调查取证后拟对该公司作出罚款577元、责令停产停业的决定。在作出决定之前,市环保局告知阀门公司作出决定的事实、理由及依据,并告知其有陈述申辩和要求组织听证的权利。市环保局应阀门公司
Wheredothespeakersmostlikelywork?
TheGherkinBuildingCommissionedby:【L31】________firmcalledFosterandPartnersThefeaturesofitsappearance:Itsshapeis
最新回复
(
0
)