首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
admin
2016-01-22
23
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,求证:至少存在一点ξ∈(0,1),使得(2ξ+1)f(ξ)+ξf’(ξ)=0.
选项
答案
将欲证结论中的ξ换成x得(2x+1)f(x)+xf’(x)=0,即 [*] 上式两端求不定积分得ln|f(x)|=一2x一ln|x|+ln|c|,即c=xe
2x
f(x),故可构造辅助函数F(x)=ze
2x
f(x),则F(x)在[0,1]上连续,在(0,1)内可导,且 F(0)=0,F(1)=e
2
f(1)=0, 所以F(x)在闭区间[0,1]上满足罗尔定理的条件,从而至少存在一点ξ∈(0,1),使得F’(ξ)=0, 故(2ξ+1)f(ξ)+ξ
解析
转载请注明原文地址:https://kaotiyun.com/show/0Dw4777K
0
考研数学一
相关试题推荐
设三阶实对称矩阵A的特征值为λ18,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a2=a3≠0,a2=a4=-a,求ATX=b的通解.
已知,设D为由x=0,y=0及x+y=t所围成的区域,求.
设A,B是n阶可逆矩阵,且A-1~B-1,则下列结果①AB~BA②A~B③A2~B2④AT~BT正确的个数为()
当x→0时,与axn是等价无穷小,则()
当x→0时,a(x)=∫0xttandt与β(x)=(n>0)是同阶无穷小,则n=()
试求z=f(x,y)=x3+y3-3xy在矩形闭域D={(x,y)|0≤x≤2,-1≤y≤2}上的最大值、最小值.
判别下列级数的敛散性:
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
一般来说,资料准确性的审核所依据的两个基本方面是()
爱瑞克森提出的理论是
可与二陈汤合用的是可与生脉散合用的是
患者,男,56岁。反复咳嗽、咯痰7年,近3年每当秋冬发病.天气变暖后逐渐减轻。检查:两肺闻及散在干哕音.X线显示肺纹理增多。其诊断是
根据《公路水运工程安全生产监督管理办法》,施工现场使用出租机械设备和施工机具及配件时,应由()共同进行验收,合格后方可使用。
甲股份有限公司(以下简称甲公司)系一家上市公司,2014年至2016年对乙股份有限公司(以下简称乙公司)股权投资业务的有关资料如下:(1)2014年5月16日,甲公司与乙公司的股东丙公司签订股权转让协议。该股权转让协议规定:甲公司以5400万元收购丙公司
在当代中国,坚持发展是硬道理的本质要求,就是()。
汉代首先提出“独尊儒术”思想的是()
使用VC++2010打开考生文件夹下blank1中的解决方案。此解决方案的项目中包含一个源程序文件blank1.c。在此程序中,函数fun的功能是:把形参s所指字符串中最右边的n个字符复制到形参t所指字符数组中,形成一个新串。若s所指字符串的长度小于n,则
•Lookatthestatementsbelowandatthefiveextractsontheoppositepagefromanarticleabouthowemployeesaremotivated.
最新回复
(
0
)