首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
admin
2017-06-14
56
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n-1
α
1
=A
n-2
α
2
=…=Aα
n-1
=α
n
, A
n
α
1
=A
n-1
α
2
=…=Aα
n
=0, 于是,用A
n-1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n-2
,A
n-3
,…,左乘①式,可得到k
2
=k
3
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/0pu4777K
0
考研数学一
相关试题推荐
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
随机试题
“捐资助学”主要体现是谁在实施义务教育中的职责?()
20世纪70年代初出土的帛书《五十二病方》涉及药物数是
患儿,女,8岁。3岁始每次精力不集中时出现斜视,近半年在玩耍时喜闭一眼。查:视力:1.0(OU),眼位33cm映光一10°~一15°,有时可正位。三棱镜中和:33cm:一30△,6m:一25△。眼球运动:各个方向到位,眼球前后节未见异常,同视机:Ⅰ级(狮笼
左金丸中吴茱萸与黄连的用量比例是
在建设工程项目开工前,建设工程质量监督机构进行监督检查的具体内容包括( )。
下面关于财务净现值的论述,正确的有()。
某物业服务企业管理有多层住宅共计100万m2,管理写字楼共计20万m2,则该企业在管理面积方面符合的物业服务企业资质等级为()
翻翻旧杂志,便能发现一些有关人性的很有意思的东西。20世纪初的报纸和杂志充斥着有关快速减肥仪、神奇治疗术以及其他种种明显的江湖骗术的广告。一个世纪之后,这类东西仍然在广告——而且响应者如云。这其中是否包含着深刻的人类行为和心理的信息?在这段文字中,作者想要
下列关于Windows2003系统下WWW服务器的描述中,错误的是()。
A、Wedon’tknowwhomwemakeatransactionwith.B、Wedon’tknowthesellers’reputationandpersonality.C、Wecan’tidentifywh
最新回复
(
0
)