首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 证明:α1,α2,…,αn线性无关.
admin
2017-06-14
61
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
证明:α
1
,α
2
,…,α
n
线性无关.
选项
答案
设k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0, ① 据已知条件,有 Aα
1
=α
2
, A
2
α
1
=Aα
2
=α
3
,…, A
n-1
α
1
=A
n-2
α
2
=…=Aα
n-1
=α
n
, A
n
α
1
=A
n-1
α
2
=…=Aα
n
=0, 于是,用A
n-1
左乘①式,得 k
1
α
n
=0. 由于α
n
≠0,得k
1
=0. 再依次用A
n-2
,A
n-3
,…,左乘①式,可得到k
2
=k
3
=…=k
n
=0,所以α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/0pu4777K
0
考研数学一
相关试题推荐
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
随机试题
《诗经·周南·芣苢》是()。
论述刑事诉讼的审判管辖。
A.促进肝细胞增殖B.特异性抑制HBV-DNA多聚酶活性C.具有抗病毒活性,免疫调节活性D.杀死并清除血液内的病毒E.诱导T细胞的分化成熟,刺激细胞因子的产生,增强B细胞的抗体应答贺普丁()
下列不属于对患有职业病的员工的处理方法的是( )。
(2001年考试真题)在协调所有者与经营者矛盾的方法中,“接收”是一种通过所有者来约束经营者的方法。()
资本主义经济危机的实质是()。
烟台港是常年不冻的优良港湾,是我国拥有的第一个10万吨级煤炭专用深水泊位港口。()
全国运动会举行女子5000米长跑比赛,辽宁、山东、河北各派了3名运动员参加。比赛前,4名体育爱好者在一起预测比赛结果。甲说:“辽宁队训练就是有一套,这次的前三名非她们莫属。”乙说:“今年与去年可不同了,金银铜牌辽宁队顶多拿一个。”丙说:“据我估计,山东队
Latenextcentury,whenscholarsarescriptingthedefinitivehistoryofthePC,theselastfewyearsofhigh-octanegrowthmay
Whichofthefollowingistrueaboutthedifferencebetweenprivateschoolsandpublicschools?
最新回复
(
0
)