首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2019-04-08
98
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
(1)由全微分方程的充要条件[*]知 f’’(x)+2xy=x
2
+2xy-f(x), 即 f’’(x)+f(x)=x
2
. ① 此方程的齐次方程f’’(x)+f(x)=0的通解为Y=C
1
cosx+C
2
sinx.非齐次方程①的特解形式为y
*
=ax
2
+bx+c,代入方程①,得a=1,b=0,c=一2.于是y
*
=x
2
一2.方程①的通解为 f(x)=C
1
cosx+C
2
sinx+x
2
一2. 由f(0)=0,f’(0)=1,求得C
1
=2,C
2
=1,从而得f(x)=2cosx+sinx+x
2
一2. (2)将f(x)的表达式代入原方程中,得 [xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=P(x,y)dx+Q(x,y)dy=0, ② 其中P(x,y),Q(x,y)分别为上式中dx,dy前面的系数函数.其通解可用积分法求之.为此取特殊路径(折线路径)积分: u(x,y)=∫
(0,0)
(x,y)
P(x,y)dx+Q(x,y)dy=∫
0
x
P(x,0)dx+Q(x,0)·0+∫
0
y
P(x,y)·0+Q(x,y)dy =∫
0
y
Q(x,y)dy=∫
0
y
(一2sinx+cosx+2x+x
2
y)dy =一2ysinx+ycosx+2xy+x
2
y
2
/2, 所以所给全微分方程的通解为一2ysinx+ycosx+x
2
y
2
/2+2xy=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/2D04777K
0
考研数学一
相关试题推荐
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
设X1和X2是相互独立的连续型随机变量,它们的概率密度函数分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则()
求积分其中D由y=x与y=x4围成.
设A与B分别是m,n阶矩阵,证明
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
设f(x)在[a,b]有连续的导数,求证:.
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求旋转曲面的方程;
设f(x,y),g(x,y)在平面有界闭区域D上连续,g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设f(x)=∫-11(1-|t|)dt(x>一1),求曲线y=f(x)与x轴所围成的平面区域的面积.
求微分方程xy=x2+y2满足初始条件y(e)=2e的特解.
随机试题
引起胃热胃火的常见病因有
男性,46岁,于劳动用力后突然感眩晕、体力不支同时伴腹部不适及恶心,半小时后呕吐暗色血性液体约800ml。病人既住有肝炎史。平时常出现鼻衄及牙龈出血。此病人首先应考虑的诊断是
尿中β2-微球蛋白增多而血中β2-微球蛋白不增多,此时出现的尿属于
下列腧穴中,治疗便秘效果较好的是
沿不同冷却的路径敷设绝缘导线和电缆时,当冷却条件最坏段的长度超过3m,应按该段条件选择绝缘导线和电缆的截面,或只对该段采用大截面的绝缘导线和电缆。()
下列不属于从业人员与监管者间的职业操守的是()。
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
通过组织股份公司使单个资本迅速增大属于资本集中。()
“博学之,审问之,慎思之,明辨之,笃行之”出自《礼记·中庸》。《礼记.中庸》属于()的经典。
新民主主义时期三种不同性质的经济成分及与之相联系的三种基本的阶级力量之间的矛盾,集中表现为
最新回复
(
0
)