首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2019-04-08
80
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
(1)由全微分方程的充要条件[*]知 f’’(x)+2xy=x
2
+2xy-f(x), 即 f’’(x)+f(x)=x
2
. ① 此方程的齐次方程f’’(x)+f(x)=0的通解为Y=C
1
cosx+C
2
sinx.非齐次方程①的特解形式为y
*
=ax
2
+bx+c,代入方程①,得a=1,b=0,c=一2.于是y
*
=x
2
一2.方程①的通解为 f(x)=C
1
cosx+C
2
sinx+x
2
一2. 由f(0)=0,f’(0)=1,求得C
1
=2,C
2
=1,从而得f(x)=2cosx+sinx+x
2
一2. (2)将f(x)的表达式代入原方程中,得 [xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=P(x,y)dx+Q(x,y)dy=0, ② 其中P(x,y),Q(x,y)分别为上式中dx,dy前面的系数函数.其通解可用积分法求之.为此取特殊路径(折线路径)积分: u(x,y)=∫
(0,0)
(x,y)
P(x,y)dx+Q(x,y)dy=∫
0
x
P(x,0)dx+Q(x,0)·0+∫
0
y
P(x,y)·0+Q(x,y)dy =∫
0
y
Q(x,y)dy=∫
0
y
(一2sinx+cosx+2x+x
2
y)dy =一2ysinx+ycosx+2xy+x
2
y
2
/2, 所以所给全微分方程的通解为一2ysinx+ycosx+x
2
y
2
/2+2xy=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/2D04777K
0
考研数学一
相关试题推荐
矩阵相似的充分必要条件为()
已知方程组无解,则a=______。
设二维随机变量(X,Y)的概率密度为f(x,y)=,—∞<x<+∞,—∞<y<+∞,求常数A及条件概率密度fY|X(Y|x)。
设总体X的概率密度为其中θ是未知参数(0<θ<1),X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ的最大似然估计。
设总体X的分布函数为其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本。求:(Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量。
设向量组a1,a2,…,am线性相关,且a1≠0,证明存在某个向量ak(2≤k≤m),使ak能由a1,a2,…,ak-1线性表示。
设D={(x,y)|0<x<1,0<y<1},且变量(X,Y)在区域D上服从均匀分布,令Z=判断X,Z是否独立.
求ydxdy,其中D是由L:(0≤t≤2π)与x轴围成的区域.
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
在椭圆=1内嵌入有最大面积的四边平行于椭圆轴的矩形,求该矩形最大面积.
随机试题
直接筹资主要有
硬膜外麻醉穿刺操作时不慎刺破硬脊膜,术后最容易出现
男性,40岁。病史2周,发热,皮肤有出血点,骨髓原始细胞>80%,过氧化物酶(++),Auer小体(+)。最可能的诊断是
关于胃的形态描述,错误的是
在开放积极条件下,一个国家国民生产总值由()四部分构成。
我国通过采用国债投资等多种措施推动经济结构调整和产业机构升级,促使我国的经济增长模式逐步由()转变。
谋求世界各国经济共同发展的根本途径是()。
TheAsiantigermomthatAmyChuaportraysinhernewbookmayseemlikejustonemorespeciesinthegenusExtremeParent—the
•Readthearticlebelowaboutsuccessfule-mailnegotiation.•Choosethebestsentencefromtheoppositepagetofilleachofth
Overthepastdecade,significantresearchhasdemonstratedwhatmanyhaveknownforalongtime:womenarecriticaltoeconomic
最新回复
(
0
)