首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0证明:向量组α,Aα,…,Ak—1α是线性无关的。
admin
2018-12-29
52
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k—1
α≠0证明:向量组α,Aα,…,A
k—1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…λ
k—1
,使得 λ
0
α+λ
1
Aα+ … +λ
k—1
A
k—1
α=0, 则有 A
k—1
(λ
0
α+λ
1
Aα+ … +λ
k—1
A
k—1
α)=0, 从而得到λ
0
A
k—1
α=0。由题设A
k—1
α≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
= … =λ
k—1
=0,因此向量组α,Aα,…,A
k—1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/2PM4777K
0
考研数学一
相关试题推荐
如果函数f(x)在点x0处取得极大值,则必有()
设线性方程组(Ⅰ)有非零公共解,则参数a=_________.
设有齐次线性方程组AX=0与BX=0,其中A,B为m×n矩阵,现有4个命题:①若AX=0的解均是BX=0的解,则R(A)≥R(B);②若R(A)≥R(B),则AX=0的解均是BX=0的解;③若AX=0与BX=0同解,则R(A)=R(B);④若R(A
设α1,α2,α3均为三维向量,则对任意常数K,L,向量组α1+kα3,α2+lα3线性无关是向量α1,α2,α3线性无关的()
二次积分=_______.
设曲线积分∫Lxy2dx+yφ(x)dy与路径无关,其中φ(x)具有连续的一阶导数,且φ(0)=0.计算曲线积分I=∫(0,0)(1,1)xy2dx+yφ(x)dy的值.
求由抛物面x2+y2=2az(a>0)及球面x2+y2+z2=3a2所围成的均匀立体的重心.
设Ω是由曲面围成的空间区域,三重积分在球坐标系下化为累次积分是().
计算曲面积分I=x(8y+1)dydz+2(1一y2)dzdx一4yzdxdy,其中∑是曲面绕y轴旋转一周所成的曲面,它的法向量n与y轴正向的夹角恒大于
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
随机试题
要使市场机制正常发挥作用,需要具备哪些条件?
用于表彰个体或群体的先进人物,公布他们的事迹,宣布给他们的奖励,分析他们的先进思想,指出应该向他们学习什么,用()
女性40岁,有胆囊结石病史2小时前,无诱因突发上腹剧痛向腰背部放散。伴恶心、呕吐。查体:体温37.5℃,巩膜无黄染,上腹部压痛;反跳痛,以中腹偏左为重。血淀粉酶1024U/dl,尿胆红素(++)。B超显示:胆囊3cm×7cm,多发强回声伴声影,0.5~0.
A、4~6周B、8~10周C、12周D、16周E、20周正常妊娠时,绒毛膜促性腺激素开始下降,是在末次月经后的
侦查人员询问证人时,正确的做法是:
下列对城市建设和房地产开发描述正确的是()。
索赔费用的计算方法有()。
在实践中,个人住房贷款期限在1年以上的,合同期内遇法定利率调整时,银行多是于()起,按相应的利率档次执行新的利率规定。
A公司于2010年7月1日发行2年期、面值总额为1800万元的—次还本、分期付息的债券,债券票面半年利率为2%,发行收入总额为1733.12万元,实际半年利率为3%。A公司每半年计息并付息—次。A公司将发行的公司债券划分为以摊余成本计量的金融负债。要求:
汽车站的1路车20分钟发一次车,5路车15分钟发一次车,两车于8:00同时发车后,再遇到同时发车至少再过______.
最新回复
(
0
)