首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布. (Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量; (Ⅱ)检验所得估计是否为无偏估计.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布. (Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量; (Ⅱ)检验所得估计是否为无偏估计.
admin
2018-11-23
48
问题
设X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.
(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;
(Ⅱ)检验所得估计是否为无偏估计.
选项
答案
(Ⅰ)由题设知,总体X的概率密度为 [*] 而E(X)=[*],现要对[*]进行矩估计和最大似然估计. 首先求矩估计量[*]:只有一个参数,用总体矩等于样本矩来解.总体一阶矩为E(X),样本一阶矩为[*],令E(X)=[*],则E(X)的矩估计量[*] 再求最大似然估计量[*]:似然函数为 [*] 由[*]=0,解得λ=[*],则[*],可以验证[*]是最大似然估计. 根据最大似然估计的不变性可知,E(X)的最大似然估计量[*] 由上可知[*] (Ⅱ)由于[*], 故[*]均是E(X)的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/36M4777K
0
考研数学一
相关试题推荐
设函数f(x)对任意的x均满足等式f(1+x)=af(x),且有f’(0)=b,其中a,b为非零常数,则()
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设函数f(x)连续,f’(0)>0,则存存δ>0,使得
设二维随机变量(X,Y)的概率密度为f(x,y)=,-∞<x<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|x)。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。(Ⅰ)证明B可逆;(Ⅱ)求AB-1。
设函数μ(x,y,z)=1+x2/6+y2/12+z2/18,单位向量则=___________.
设三阶实对称矩阵的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
设λ1,λ2是n阶方阵A的两个不同特征值,X1、X2分别为属于λ1、λ2的特征向量.证明:X1+X2不是A的特征向量.
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T.α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设n(n≥2)阶行列式D=,则()
随机试题
焊接质量检验结果是产品质量、安全和()评定的重要依据。
企业因违反国家法律、法规被撤销所进行的清算是()
执业药师资格考试合格者发给《执业药师资格证书》,该证书在全国范围内有效。()
()是我国法定计量单位。
X光脊椎检查拍摄仪
发审委审核上市公司非公开发行股票申请,适用普通程序。()
2017年3月1日,A公司与B公司签订了100万元的展览设备买卖合同。该合同约定:A公司于3月10日向B公司签发一张金额为人民币15万元的银行承兑汇票作为定金;B公司于4月1日交付全部展览设备;A公司于B公司交付展览设备之日起10日内付清货款。3月10日
如果竞争对手实力强大并已采用无差异性市场策略,企业则应采取差异性市场策略。()
旅行社责任保险合同的投保人、被保险人和受益人分别是()。
一组数据一4,一1,0,2,8的方差等于__________。
最新回复
(
0
)