首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布. (Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量; (Ⅱ)检验所得估计是否为无偏估计.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布. (Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量; (Ⅱ)检验所得估计是否为无偏估计.
admin
2018-11-23
30
问题
设X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.
(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;
(Ⅱ)检验所得估计是否为无偏估计.
选项
答案
(Ⅰ)由题设知,总体X的概率密度为 [*] 而E(X)=[*],现要对[*]进行矩估计和最大似然估计. 首先求矩估计量[*]:只有一个参数,用总体矩等于样本矩来解.总体一阶矩为E(X),样本一阶矩为[*],令E(X)=[*],则E(X)的矩估计量[*] 再求最大似然估计量[*]:似然函数为 [*] 由[*]=0,解得λ=[*],则[*],可以验证[*]是最大似然估计. 根据最大似然估计的不变性可知,E(X)的最大似然估计量[*] 由上可知[*] (Ⅱ)由于[*], 故[*]均是E(X)的无偏估计量.
解析
转载请注明原文地址:https://kaotiyun.com/show/36M4777K
0
考研数学一
相关试题推荐
设x∈[0,a]时f(x)连续且f(x)>0(x∈(0,a]),又满足f(x)=,求f(x).
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0.证明:在[-1,1]内存在ξ,使得f’’(ξ)=3.
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设随机变量X1,X2,X3相互独立,且则E[X1(X1+X2-X3)]为___________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,若α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________.
已知α1,α2均为2维向量,矩阵A=[2α1+α2,α1一α2],β=[α1,α2],若行列式|A|=6,则|B|=____
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T.α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
随机试题
下列药物中,属于厥阴头痛引经药的是()(2010年第65题)
简述行为治疗中阳性强化疗法。
Asurveyhascomeupwithsomeinteresting【B1】______aboutthecostoflivinginourmajorcities.Tokyoisstillthe【B2】____
A、体克B、腹膜刺激征C、两者均有D、两者均无单纯性肠梗阻可出现_______。
医师的下列行为不属于违法违规的是
某ICU护士,毕业工作3年来,基本上是一个人护理某个病人,病人需要的全部护理由她全面负责,实施个体化护理。对ICU的重症病人护理以下错误的是
将830修约到百位数0.2单位。得820。()
关于旅游保险的保险责任,下列说法不正确的是()。
人类社会的物质性表现为()。
下列关于有条件的宏的说法,错误的一项是()。
最新回复
(
0
)