首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
admin
2018-09-25
90
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
=2α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
2
+2α
3
.
A能否相似于对角矩阵,说明理由.
选项
答案
由第一小题知 (A-2E)[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] 故 A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] [α
1
,α
2
,α
3
]B. 因α
1
,α
2
,α
3
线性无关,故C=[α
1
,α
2
,α
3
]是可逆矩阵,则C
-1
AC=B,即A~B. 又B有三重特征值λ
1
=λ
2
=λ
3
=2,但 [*] r(2E-B)=2, (2E-B)x=0只有一个线性无关解向量,故B不能相似于对角矩阵A. 由相似关系的传递性知,A不能相似于对角矩阵A.
解析
转载请注明原文地址:https://kaotiyun.com/show/50g4777K
0
考研数学一
相关试题推荐
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(Ⅰ)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
设a,b,c为非零常数,求以曲线Г:为准线,母线平行于l=(a,b,c)的柱面S的方程.
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
已知Q=,P是3阶非零矩阵,且PQ=0,则
设总体X一N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(Ⅰ)验证的无偏性;(Ⅱ)求方差并比较其大小.
求下列函数f(x)在x=0处带拉格朗日余项的n阶勒公式:(Ⅰ)f(x)=;(Ⅱ)f(x)=exsinx.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
考虑一个试验中,一位机械师从一批零件中逐个拿出零件,直到拿到符合要求的零件为止.拿出零件不符合要求记为F,符合要求记为S.(1)写出这一试验的样本空间;(2)记X=试验终止时取出的零件个数,写出随机变量X作为样本空间上的函数的表达式.
随机试题
现代意义的财产税始创于()
foreigncurrencyreserves
急性失血时,最先出现的代偿反应是
患儿,10岁。课间活动时,突然两眼凝视,呆立不动,呼之不应,持续约10秒后恢复正常。以往有类似发作。考虑为
甲的丈夫强奸了丙,案发后甲多次找到丙,要求丙将强奸说成通奸,并拿出5000元作为给丙的“改口”补偿,丙未同意。甲便将丙拉到家中,强迫丙按照其事先写好的说明是通奸的材料抄写一份并按上指印。丙仍不同意,甲便一直不允许丙离开,4天后丙才被警察解救。关于甲的行为定
国产水准仪按精度不同划分为()个等级。
提高企业经营安全性的途径有()。
在下列描述中,对有效资本市场涵义的描述不正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,计算每名学生所选课程的学分总和,并依次显示“
PeopleinthemassadvertisingbusinessandotherswhostudyAmericansocietyhavebeenveryinterestedinthequestion:Whatdo
最新回复
(
0
)