首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
admin
2018-09-25
104
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
=2α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
2
+2α
3
.
A能否相似于对角矩阵,说明理由.
选项
答案
由第一小题知 (A-2E)[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] 故 A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] [α
1
,α
2
,α
3
]B. 因α
1
,α
2
,α
3
线性无关,故C=[α
1
,α
2
,α
3
]是可逆矩阵,则C
-1
AC=B,即A~B. 又B有三重特征值λ
1
=λ
2
=λ
3
=2,但 [*] r(2E-B)=2, (2E-B)x=0只有一个线性无关解向量,故B不能相似于对角矩阵A. 由相似关系的传递性知,A不能相似于对角矩阵A.
解析
转载请注明原文地址:https://kaotiyun.com/show/50g4777K
0
考研数学一
相关试题推荐
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(Ⅰ)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
设随机变量X和Y的联合密度为(Ⅰ)试求X的概率密度f(x);(Ⅱ)试求事件“X大于Y”的概率P{X>Y};(Ⅲ)求条件概率P{Y>1|X<0.5}.
证明α1,α2,…,αs(其中α1≠0)线性相关的充分必要条件是存在一个αi(1<i≤s)能由它前面的那些向量α1,α2,…,αi-1线性表出.
计算曲面积分I=(x+y+z)dS,其中∑为左半球:x2+y2+z2=R2,y≤0.
I=∫Г(x2-yz)dx+(y2-xz)dy+(z2-xy)dz,其中Г是沿螺线x=acosθ,y=asinθ,z=θ,从A(a,0,0)到B(a,0,h)的有向曲线.
设平面上有界闭区域D由光滑曲线C围成,C取正向(如图10.18).(Ⅰ)P(x,y),Q(x,y)在D有连续的一阶偏导数,证明格林公式的另一种形式:dxdy=∫C(Pcosα+Qcosβ)ds,其中n=(cosα,cosβ)是C的单位外法向量.(
已知正态总体X~N(a,相互独立,其中4个分布参数都未知.设X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,样本均值分别为样本方差相应为,则检验假设H0:a≤b使用t检验的前提条件是
求线性方程组的通解,并求满足条件的所有解.
求其中∑为上半球z=的上侧,a>0为常数.
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
随机试题
日本的军事战略由内向型的“专守防卫”战略,向外向型的“______”战略转变。()
朱自清早期参加的文学社团是_________。朱自清发表的第一部散文集是《_________》。的《背影》通过对人物_________的重点描写刻画了一个慈父的形象。
胃溃疡最常发生的部位是
关于市场集中度风险的说法,错误的是()。
某瓷器生产厂每月泥料的需求量是35吨,每次订货的订购费用为190元,每吨泥料的保管费用为单价的5%,假设每吨泥料单价为380元。根据以上资料,回答下列问题:该厂采用单一品种大批量生产模式,其生产物流特征包括()。
甲公司为增值税一般纳税人,主要从事货物运输服务,2014年8月有关经济业务如下:(1)购进办公用小轿车1辆,取得增值税专用发票上注明的税额为25500元;购进货车用柴油,取得增值税专用发票上注明的税额为51000元。(2)购进职工食堂用的材料,取得增值
积极倾听的技巧有()。
决定跑速的最主要因素是()。
东北某市花费420万元巨资,从深山引进4200多株大树,因“水土不服”已有400多株死掉,其余的要靠麻绳捆绑、支架支撑才能勉强活命。进城的这些大树因多年生长在深山密林之中,无论其外形、内部发育均为适应深山生活而形成。进城之后空气、土壤等生存环境全部改变丁,
新闻媒介是沟通社会与政府的重要桥梁,在政务信息传输系统中具有_______的作用。但体制转型的压力,加之巨大利益的诱惑及制度缺失,给记者的职业操守带来巨大_______,各种虚假报道不时见诸报端,成为小道消息的渊薮。因此我们必须不断完善新闻从业人员资格准入
最新回复
(
0
)