首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3. A能否相似于对角矩阵,说明理由.
admin
2018-09-25
88
问题
设A是3阶矩阵,α
1
,α
2
,α
3
是3维列向量,α
1
≠0,满足Aα
1
=2α
1
,Aα
2
=α
1
+2α
2
,Aα
3
=α
2
+2α
3
.
A能否相似于对角矩阵,说明理由.
选项
答案
由第一小题知 (A-2E)[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] 故 A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
] [*] [α
1
,α
2
,α
3
]B. 因α
1
,α
2
,α
3
线性无关,故C=[α
1
,α
2
,α
3
]是可逆矩阵,则C
-1
AC=B,即A~B. 又B有三重特征值λ
1
=λ
2
=λ
3
=2,但 [*] r(2E-B)=2, (2E-B)x=0只有一个线性无关解向量,故B不能相似于对角矩阵A. 由相似关系的传递性知,A不能相似于对角矩阵A.
解析
转载请注明原文地址:https://kaotiyun.com/show/50g4777K
0
考研数学一
相关试题推荐
已知α1=(a,a,a)T,α2=(一a,a,b)T,α3=(一a,一a,一b)T线性相关,则a,b满足关系式__________.
设函数y=f(x+y),其中f具有二阶导数,且f′≠1,求.
I=x3y2zdV,其中Ω是由x=1,x=2,y=0,y=x2,z=0及z=所围成的区域.
已知α,β都是单位向量,夹角是,求向量2α+β与-3α+2β的夹角.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
已知总体X服从正态分布N(μ,σ2),X1,…,X2n是来自总体X容量为2n的简单随机样本,当σ2未知时,Y=(X2i—X2i-1)2为σ2无偏估计,则C=__________,DY=__________.
计算行列式D4=之值.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
(09年)设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点个数为
随机试题
关于建筑工程档案归档整理的说法,正确的有()。
“无形资产”科目下,不可以设置的二级科目是()
饮食少而缺乏纤维素导致的便秘粪块嵌顿在直肠
食管癌的早期症状是
关于实施监督检查,下列表述正确的是()。
下列关于工程造价管理目标的说法错误的是()。
水利工程建设项目招标分为()。
王先生喜好旅游,经常出国。他的个人资产负债表显示,其负债超过了资产,可以看出王先生面临财务危机的风险。()
在微机的硬件设备中,有一种设备在程序设计中既可以当做输出设备,又可以当做输入设备,这种设备是()。
ForAmerican’shighschoolseniors,Aprilisthecruelestmonth.That’swhencollegesfloodpostalsystemwithnewsofwhohasw
最新回复
(
0
)