首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在[1,+∞)上处处有f”(x)<0,且f(1)=2,f’(1)=一3,证明:在(1,+∞)内方程f(x)=0仅有一个实根.
设在[1,+∞)上处处有f”(x)<0,且f(1)=2,f’(1)=一3,证明:在(1,+∞)内方程f(x)=0仅有一个实根.
admin
2016-01-11
49
问题
设在[1,+∞)上处处有f”(x)<0,且f(1)=2,f’(1)=一3,证明:在(1,+∞)内方程f(x)=0仅有一个实根.
选项
答案
将函数f(x)在x=1处展开为一阶泰勒公式,得 [*] 由题设f”(x)<0,知[*]于是 f(x)<2—3(x一1)=5—3x. 取[*],f(x
0
)<0,又f(1)=2>0,由介值定理知,存在η∈(1,x
0
)[*](1,+∞),使得f(η)=0,即方程f(x)=0在(1,+∞)内有实根存在. 由于f”(x)<0,[*]∈(1,+∞),所以f’(x)单调减少,于是f’(x)≤f’(1)=一3,即当x≥1时,f’(x)<0,f(x)单调减少,故方程f(x)=0在(1,+∞)内只有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/5l34777K
0
考研数学二
相关试题推荐
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求一个可逆线性变换x=Pz化f为规范形.
设y=y(x)由方程y=f(x2+y2)+f(x+y)确定,且y(0)=2,其中f(x)可导,且f’(2)=1/2,f’(4)=1,则y’(0)=________.
设A=,则与A既相似又合同的矩阵为()
设曲线Y=a与y=㏑(x>0)在点(x0,y0)处有公切线.求两曲线与x轴所围图形绕x轴旋转一周所得旋转体的体积V.
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Ox轴旋转一周所产生的两个旋转体的体积之比;
设生产某种产品必须投入两种要素x1和x2分别为两要素的投入量,Q为产出量,若生产函数为Q=2x1αx2β,其中α,β为正常数,且α+β=1,假设两种要素的价格分别为p1和p2,试问:当产量为12时,两要素各投入多少可以使得投入总费用最小?
假设对于一切实数x,函数f(x)满足等式f’(x)=x2+∫0xf(t)dt,且f(0)=2,则f(x)=________。
随机试题
简述营养性巨幼红细胞性贫血的外周血象特点。
在政府与事业单位会计中,对会计对象和会计工作空问范围进行限定的假设是()
下列行为可以代理:签订买卖合同和()。A.收养未成年人B.领取结婚证C.向酒店预订酒席D.刑事辩护
A.清平之药B.温暖之药C.活血之药D.解毒之药E.温补之药
水谷精微与清气相结合生成( )。
已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ=()。
下列关于矩阵式组织结构的叙述正确的是()。
有个群众上访,你去接待,领导不在,同时领导临走时告诉你没有大事情不要打扰他,对此你怎么办?
材料一:诸断罪而无正条,其应出罪者,则举重以明轻;其应入罪者,则举轻以明重。——《唐律.名例》材料二:凡律令该载不尽事理,若断罪无正条者,引律比附。应加、应减,定拟罪名,转达刑部议定奏闻。若辄断决致罪有出入者,以故失论。——《大明律.名例》
在关系数据库中,对一个关系做投影操作后,新关系的元组个数将()
最新回复
(
0
)