首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知ξ=[1,1,-1]T是矩阵的一个特征向量. (1)确定参数a,b及ξ对应的特征值λ; (2)A是否相似于对角矩阵,说明理由.
已知ξ=[1,1,-1]T是矩阵的一个特征向量. (1)确定参数a,b及ξ对应的特征值λ; (2)A是否相似于对角矩阵,说明理由.
admin
2018-09-25
47
问题
已知ξ=[1,1,-1]
T
是矩阵
的一个特征向量.
(1)确定参数a,b及ξ对应的特征值λ;
(2)A是否相似于对角矩阵,说明理由.
选项
答案
(1)设A的特征向量ξ所对应的特征值为λ,则有Aξ=λξ,即 [*] 解得λ=-1,a=-3,b=0. (2)当a=-3,b=0时,由 [*] 知λ=-1是A的三重特征值,但 [*] 当λ=-1时,对应的线性无关特征向量只有一个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/6eg4777K
0
考研数学一
相关试题推荐
=___________.
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
已知A=,若A*B(A*)*=8A-1B+12E,①求矩阵B.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
已知方程组总有解,则λ应满足__________.
随机试题
根据我国《公司法》的规定,公司是其以_____对外承担责任的。()
A.呕吐清水痰涎B.呕吐黏痰黄水C.呕吐物酸臭D.呕吐脓汁实热证则表现为
女性,28岁。面颊部、指末端及甲周出现暗红色斑1个月,四肢关节痛伴持续性发热10天。实验室检查:WBC3.5×109/L,Hb87g/L,ESR54mm/L,尿蛋白(++)。本病可能的诊断为
已知年名义利率r,每年计息次数m,则年有效利率为( )。
以下说法中,不符合《旅游区(点)质量等级的划分与评定》规定的是()。
会议通讯服务力求()
2011年我国全部工业增加值188572亿元。规模以上工业增加值增长13.9%。在规模以上工业中,国有及国有控股企业增长9.9%;集体企业增长9.3%,股份制企业增长15.8%,外商及港澳台商投资企业增长10.4%;私营企业增长19.5%。轻工业增长13.
在表和文中提到“裔族”①、“亚裔”②和“各亚裔”③的意思是:对文中所说的“在某些地区的大专课程中,亚裔就读生占本裔86%,白人为64%……”里的百分数该怎样理解?这里说明了什么问题?判断正确的是:
设p(x)在[a,b]上非负连续,f(x)与g(x)在[a,b]上连续且有相同的单调性,其中D={(x,y)|a≤x≤b,a≤y≤b},判别I1=(x)f(y)p(y)g(y)dxdy的大小,并说明理由.
JudithVogtli,directorofanupstateNewYork-basedabstinence(thepracticeofrefrainingfromsex,alcohol,etc)organization
最新回复
(
0
)