首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。 求变换后的微分方程满足初始条件y(0)=0,的解。
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。 求变换后的微分方程满足初始条件y(0)=0,的解。
admin
2021-11-25
53
问题
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。
求变换后的微分方程满足初始条件y(0)=0,
的解。
选项
答案
特征方程为r
2
-1=0,特征根为r
1,2
=±1,因为i不是特征值,所以设特解为y
*
=acosx+bsinx,代入方程得a=0,b=[*],故y
*
=[*]sinx,于是方程的通解为 y=C
1
e
x
+C
2
e
-x
[*]sinx 由初始条件得C
1
=1,C
2
=-1,满足初始条件的特解为y=e
x
-e
-x
[*]sinx
解析
转载请注明原文地址:https://kaotiyun.com/show/6py4777K
0
考研数学二
相关试题推荐
设微分方程=2y-x,在它的所有解中求一个解y=y(x),使该曲线y=y(x)与直线x=1,x=2及x轴围成的图形绕x轴旋转一周所生成的旋转体体积最小.
用待定系数法求微分方程y″一y=xex的一个特解时,特解的形式是()(式中a,b为常数).
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
证明:(I)若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),则至少存在一点ξ∈(1,3),使得φ"(ξ)<0。
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a>0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
设y(x)是初值问题的解,则∫0+∞xyˊ(x)dx=()
设f(x),g(x)二阶可导,又f(0)=0,g(0)=0,f′(0)>0,g′(0)>0,令F(x)=∫0xf(t)g(t)dt,则
设f(u)具有二阶连续导数,且g(x,y)=
设函数f(x)二阶可导,且f’(x)>0,f"(x)>0,△y=f(x+△x)-f(x),其中△x
微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)().
随机试题
Iunderstandthetwofactorsthatcontributedtomydownfall:______(缺乏职业目标和缺乏自信).
在财产保险合同有效期内,保险标的的危险程度显著增加的,被保险人应当按照合同约定及时通知()。
根据《碾压式土石坝施工技术规范》DL/T5129--2001,筑坝材料施工试验项目包括()。
背景A公司参与远离所在地炼钢厂的机电安装工程总承包的投标,投标前做了如下工作:(1)分析了招标文件工程范围,本工程含机械设备安装、电气及自动化系统安装、钢结构及非标准件制作安装、工业给水排水施工、防腐及保温工程、筑炉工程。并分析了本公司
某公司上年年末支付每股股息2元,预期回报率为15%,未来3年中超常态增长率为20%,随后的增长率为8%,则股票的价值为()。
下列组织结构类型中,由专门从事某项工作的项目小组发展而来的是()。
下列关于股份支付的会计处理中,正确的有()。
甲公司为增值税一般纳税人,于2015年12月5日以一批商品换入乙公司的一项非专利技术,该交换具有商业实质。甲公司换出商品的账面价值为80万元,不含增值税的公允价值为100万元,增值税额为17万元;另收到乙公司补价10万元。甲公司换入非专利技术的原账面价值为
阅读“青藏地区”教学片断,回答问题。教师提出一个问题:“青藏地区”是什么样的?【活动1】在青藏地区示意图上填注以下地理事物(1)填注主要经线、纬线的度数。(2)填注喜马拉雅山脉、昆仑山脉、祁连山脉、横断山脉、塔里木河、金沙江、塔里木盆地。【活动2
现在公务员面临的工作情况复杂多变,需要我们具备理性的判断及处理能力,请你结合自身经历,列举一件你遇到过的危急事情,并说明你是如何处理的。
最新回复
(
0
)