首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求矩阵B.使得A(α1,α2,α3)=(α1,α2,α3)B;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+33. 求矩阵B.使得A(α1,α2,α3)=(α1,α2,α3)B;
admin
2021-02-25
99
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3
3
.
求矩阵B.使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B;
选项
答案
由题设条件,有 [*] 可知 [*]
解析
本题主要考查矩阵的基本运算.相似矩阵的性质(相似矩阵有相同的特征值),矩阵的特征值与特征向量的计算以及矩阵对角化的方法.由题设,容易求得矩阵B.由A与B相似,要求矩阵A的特征值,仅需求矩阵B的特征值,最后求可逆矩阵P即可.
转载请注明原文地址:https://kaotiyun.com/show/8Z84777K
0
考研数学二
相关试题推荐
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A为n阶实对称矩阵,满足A2=E,并且r(A+E)=k<n.①求二次型xTAx的规范形.②证明B=E+A+A2+A3+A4是正定矩阵,并求|B|.
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
若三阶方阵,试求秩(A).
下列矩阵中,正定矩阵是()
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
随机试题
Inmostcultures,whenyoumeetacquaintancesforthefirsttimeduringaday,itisnormaltogreetthem.Themainpurposeoft
案情:甲市A县的刘某与乙市B区的何某签订了房屋买卖合同,购买何某位于丙市C区的一套房屋。合同约定,因合同履行发生的一切纠纷,应提交设立于甲市的M仲裁委员会进行仲裁。之后,刘某与何某又达成了一个补充协议,约定合同发生纠纷后也可以向乙市B区法院起诉。刘
证券市场融资活动是指()之间以有价证券为媒介,实现资金融通的金融活动。
某公司生产某产品的固定成本是20万元,单位可变成本是5元,产品单位售价为10元,其盈亏平衡点的产量为()件。
某企业生产甲产品,连续经过两道工序依次加工。原材料在生产开始时一次投料,第一工序本期完工的半成品全部转入第二工序,成本结转采用逐步综合结转,月末在产品完工程度50%。有关各步骤产量及成本资料如下:产量资料:要求:试根据上述资料,计算甲半成品、
甲公司和乙公司双方签订买卖合同,甲公司向乙公司购人价值100万元的货物用于试制新产品,承诺3个月后付款。甲公司应乙公司的要求,请A公司和B公司作担保人。其中,A公司以自有的一套加工设备提供抵押担保,B公司提供保证担保。乙公司向甲公司按期供货后,甲公司为筹集
()是社会主义社会新型道德关系的一个重要标志。
通过教育可以实现个人能力的提高,进而促进经济增长。这种观点属于()。
Duringthetwentiethcenturytherehasbeenagreatchangeinthelivesofwomen.Awomanmarryingattheendofthenineteenth
Moreandmoreoftheworld’spopulationarelivingintownsorcities.Thespeedatwhichcitiesaregrowinginthelessdevelop
最新回复
(
0
)