首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足A2=A,且r(A)=r(0﹤r≤n).证明: 其中Er是r阶单位矩阵.
设A是n阶矩阵,满足A2=A,且r(A)=r(0﹤r≤n).证明: 其中Er是r阶单位矩阵.
admin
2018-09-25
52
问题
设A是n阶矩阵,满足A
2
=A,且r(A)=r(0﹤r≤n).证明:
其中E
r
是r阶单位矩阵.
选项
答案
方法一 由A
2
=A,知A的特征值的取值为1,0,由A-A
2
=A(E-A)=O知 r(A)+r(E-A)≤n, r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故r(A)+r(E-A)=n,又r(A)=r,从而r(E-A)=n-r. 对λ=1,(E-A)X=0,因r(E-A)=n-r,故有r个线性无关特征向量,设为ξ
1
,ξ
2
,…,ξ
r
; 对λ=0,(0E-A)X=
解析
转载请注明原文地址:https://kaotiyun.com/show/8eg4777K
0
考研数学一
相关试题推荐
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
已知A=,若A*B(A*)*=8A-1B+12E,①求矩阵B.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设X1,X2,…,Xn是取自正态总体X的简单随机样本,EX=μ,DX=4,试分别求出满足下列各式的最小样本容量n:(Ⅰ)P{|一μ|≤0.10}≥0.90;(Ⅱ)D≤0.10;(Ⅲ)E|-μ|≤0.10.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
已知f(x)=,证明f′(x)=0有小于1的正根.
设f(x)在[0,b]可导,f′(x)>0(x∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
随机试题
以私有制为基础的商品经济的基本矛盾是()
与过敏性紫癜的特点不符的有
以下对转让信用证的表述中,错误的是()。
海关审定的进口货物的成交价格,是指卖方向中华人民共和国境内销售该货物时买方为进口该货物向卖方实付、应付的价格总额,包括直接支付的价款和间接支付的价款。()
错接事故容易发生在()。
对于假想防卫,应当()。
求
关于IP协议的描述,错误的是()。
必须用一对大括号括起来的程序段是()。
Americansuffersfromanoverdoseofwork【C1】______whotheyareorwhattheydo.Theyspend【C2】______timeatworkthanatanyti
最新回复
(
0
)