首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
admin
2014-01-26
51
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,
,证明:存在
,使得f’(ξ)+f’(η)==ξ
2
+η
2
.
选项
答案
令[*],由题知F(0)=F(1)=0, F(x)在[*]上用拉格朗日中值定理, [*] ① F(x)在[*]上利用拉格朗日中值定理, [*] ② 两式相加得 f’(ξ)|f’(η)=ξ
2
+η
2
.
解析
[分析] 这是一个双介值的证明题,构造辅助函数,用两次拉格朗日中值定理.
[评注] 一般来说,对双介值问题,若两个介值有关联同时用两次中值定理,若两个介值无关联时用一次中值定理后,再用一次中值定理.
转载请注明原文地址:https://kaotiyun.com/show/oh34777K
0
考研数学二
相关试题推荐
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(06年)证明:当0<a<b<π时,bsinb+2cosb+π6>asina+2cosa+πa.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0.试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(91年)某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(2012年)由曲线y=和直线y=x及y=4x在第一象限中围成的平面图形的面积为______。
随机试题
患者何某,女性,54岁。由于暴怒,突然晕倒,不省人事,牙关紧闭,面赤唇紫,舌红,脉沉弦。其辨证为
红细胞生成素维生素B12
如果在下降趋势的末期出现上升三角形,以后可能会( )。
督促程序适用于()的案件。
“上善若水”一语出自()。
花儿:因开放而飘香
你对琐碎的工作是喜欢还是讨厌?为什么?
以下哪一个教育政策不是抗日战争时期中国共产党提出来的?()
有一个NAT设备具有一个外部IP地址,如果内部的5台主机都希望利用该外部IP地址同时访问Internet,那么该设备应该采用的工作模式为()。
WeddingCrashersisacomedythathadoncetakenthetopatNorthAmericanboxofficein2005.Consideringthewaterloosmany(3
最新回复
(
0
)