首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有三张不同平面的方程ai1x+ai2y+ai3z=bi,i=1.2.3.它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为
设有三张不同平面的方程ai1x+ai2y+ai3z=bi,i=1.2.3.它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为
admin
2018-08-03
55
问题
设有三张不同平面的方程a
i1
x+a
i2
y+a
i3
z=b
i
,i=1.2.3.它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为
选项
A、
B、
C、
D、
答案
B
解析
设由三个平面方程联立所得线性方程组为Ax=b,则由题设条件知Ax=b有解,且因其导出组Ax=0的基础解系所含向量个数为3一r(A)=3—2=1,故Ax=b的通解具有如下形式:
,其中t为任意常数.
这显然是一空间直线的方程,故此时三个平面必交于一条直线,因而只有(B)正确.
转载请注明原文地址:https://kaotiyun.com/show/9ug4777K
0
考研数学一
相关试题推荐
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量Z=近似服从正态分布,并指出其分布参数.
早晨开始下雪,整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式:(Ⅱ)D={(x,y)|x2+y2>0}.
设总体X一N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量(Ⅰ)验证的无偏性;(Ⅱ)求方差并比较其大小.
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
计算行列式D4=之值.
随机试题
治疗漏肩风兼有气滞血瘀者。可配穴为
不属于QUACERS模式所重视的方面是
实则泻之属于
共同规则不能区分的是这样的两种证券组合A和B:σB2<σA2且E(rB)>E(rA)( )
金融期货的种类不包括()。
美术教学计划包括___________计划、___________计划、___________计划。
关于监视居住的说法正确的是()。
在改革中,我们始终坚持两条根本原则,一是以社会主义公有制经济为主体,一是效益优先。()
我去理我的头发。(西南大学2015)
Anewgenerationofmind-enhancingdrugsthatactas"cosmetics"forthebraincouldbecomeascommonasacupofcoffee,accord
最新回复
(
0
)