首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列二重积分: (I)其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ),其中D:x2+y2≤1; (Ⅲ)其中D由直线x=一2,y=0,y=2及曲线所围成.
求下列二重积分: (I)其中D为正方形域:0≤x≤1,0≤y≤1; (Ⅱ),其中D:x2+y2≤1; (Ⅲ)其中D由直线x=一2,y=0,y=2及曲线所围成.
admin
2017-07-28
55
问题
求下列二重积分:
(I)
其中D为正方形域:0≤x≤1,0≤y≤1;
(Ⅱ)
,其中D:x
2
+y
2
≤1;
(Ⅲ)
其中D由直线x=一2,y=0,y=2及曲线
所围成.
选项
答案
(I)尽管D的边界不是圆弧,但由被积函数的特点知选用极坐标比较方便.D的边界线x=1及y=1的极坐标方程分别为 [*] (Ⅱ)在积分区域D上被积函数分块表示,若用分块积分法较复杂.因D是圆域,可用极坐标变换,转化为考虑定积分的被积函数是分段表示的情形.这时可利用周期函数的积分性质. 作极坐标变换x=rcosθ,y=rsinθ,则D:0≤θ≤2π,0≤r≤1.从而 [*] 其中[*]由周期函数的积分性质,令t=θ+θ
0
就有 [*] (Ⅲ)D的图形如图9.53所示.若把D看成正方形区域挖去半圆D
1
,则计算D
1
上的积分自然选用极坐标变换.若只考虑区域D,则自然考虑先x后y的积分顺序化为累次积分.若注意D关于直线y=1对称,选择平移变换则最为方便. 作平移变换u=x,v=y一1,注意曲线[*]即x
2
+(y—1)
2
=1,x≤0,则D变成D’.D’由u=-2,v=一1,v=1,u
2
+v
2
=1(u≤0)围成,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/9zr4777K
0
考研数学一
相关试题推荐
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设n维向量a=(a,0,…,0,a)T,a>0,E为n阶单位矩阵,矩阵A=E-aaT,B=E+(1/a)aaT,其中A的逆矩阵为B,则a=________.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1及S2的方程;
(2002年试题,六)设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d)记当ab=cd时,求I的值.
(2000年试题,五)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
(2008年试题,23)设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记证明T是μ2的无偏估计量;
设积分区域D={(x,y)|一1≤x≤1,一1≤y≤1},则二重积分
函数u=3x2y一2yz+z3,v=4xy—z3,点P(1,一1,1)u在点P处沿gradv|p方向的方向导数等于________.
随机试题
不孕症患者进行卵巢功能检查时,最为简便的方法是()
防止减压蒸馏暴沸现象产生的有效方法是
《中华人民共和国专利法》规定:“申请专利应当向专利局提交申请文件一式两份。”该规范性质如何?()
构造平原按其所处的绝对标高的高度进行划分,在200m以下的平展地带是()。
以下哪种形式不专属于铁路货物的装运()。
某公司财务人员向税务师提出了下列增值税一般纳税人的涉税问题:(1)本市最近遭遇了较强降雨,该公司虽将货物全部存于仓库做好了相关措施,但仓库仍浸水,导致存货无法使用而损失。这种损失需要做进项税额转出吗?(2)存货盘点过程中,发现原材料盘亏1200千克,每
“1801年在英国同丹麦进行的哥本哈根海战中,英国海军英雄纳尔逊上校在激战中处境危险,接到了撤退的信号。舰长弗雷问他怎么办,他将望远镜举到一只失明的眼睛跟前说:‘我没有看见那个信号。’于是又勇敢地继续指挥战斗,结果取得了胜利,丹麦被迫停战。”这段话
“毋以日月为功,实试贤能为上,量材而授官,录德而定位”体现了董仲舒的三大文教政策中的
假定有以下两个过程:PrivateSubPPP(aAsSingle,bAsSingle)a=a+bPrinta,bb=a+bPrinta,bEndSub
ThebirthofsuburbiaA.Thereisnosinglepivotalmomentthatcouldbeseparatedoutfromanyotherastheconceptionofth
最新回复
(
0
)