首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化为标准形。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。 求正交变换x=Qy,把f(x1,x2,x3)化为标准形。
admin
2018-12-29
27
问题
已知二次型f(x
1
,x
2
,x
3
)=(1—a)x
1
2
+(1—a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2。
求正交变换x=Qy,把f(x
1
,x
2
,x
3
)化为标准形。
选项
答案
a=0,则A=[*],由特征多项式 |λE—A|=[*]=(λ—2)[(λ—1)
2
—1]=λ(λ—2)
2
得矩阵A的特征值λ
1
=λ
2
=2,λ
3
=0。 当λ=2,由(2E—A)x=0得特征向量α
1
=(1,1,0)
T
,α
2
=(0,0,1)
T
。 当λ=0,由(OE—A)x=0得特征向量α
3
=(1,—1,0)
T
。 容易看出α
1
,α
2
,α
3
已两两正交,故只需将它们单位化 γ
1
=[*](1,1,0)
T
,γ
2
=(0,0,1)
T
,γ
3
=[*](1,—1,0)
T
。 那么令Q=(γ
1
,γ
2
,γ
3
)=[*],则在正交变换x=Qy下,二次型f(x
1
,x
2
,x
3
)化为标准形f(x
1
,x
2
,x
3
)=x
T
Ax=y
T
Λy=2y
1
2
+2y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/ADM4777K
0
考研数学一
相关试题推荐
若n阶可逆矩阵A的每行元素之和均为c,则矩阵3A-2A-1有一个特征值为________.
设f(x)、g(x)均为连续的可微函数,且x=yf(xy)dx+xg(xy)dy.若f(x)=φ’(x),求二元可微函数u(x,y),使得du=z.
函数u=ln(x2+y2+z2)在点M(1,2,一2)处的梯度gradu|M=______.
求解微分方程xy’’+y’=4x.
设f(x)有二阶连续导数且f’(0)=0,则下列说法正确的是().
已知ξ1=(1,1,0,0)T,ξ2=(1,0,1,0)T,ξ3=(1,0,0,1)T是齐次线性方程组(Ⅰ)的基础解系,η1=(0,0,1,1)T,η2=(0,1,0,1)T是齐次线性方程组(Ⅱ)的基础解系,求方程组(Ⅰ)与(Ⅱ)的公共解.
已知A是3×4矩阵,r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程Ax=0的任一解,求Ax=0的基础解系.
设3×3阶矩阵A=[α,β1,β2],B=[β,β,β],其中α,β,β1,β2均为3维列向量,已知行列式|A|=2,则行列式|[α―β,2β1-β2,β1-2β2]|=______.
已知A=[α1,α2,α3,α4]是4阶矩阵,β是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=[α3,α2,α1,β-α4],求方程组Bx=α1-α2的通解.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
随机试题
异烟肼+链霉素+对氨基水杨酸钠治疗结核病属于单胺氧化酶抑制剂+氯丙嗪治疗紧张和烦躁属于
在社会需求调查分析的基础上,对项目相关的规划及目标进行分析评价,重点从()角度,论证项目建设的必要性及社会需求,评价项目目标功能定位是否合理。
根据《建设工程施工合同(示范文本)》GF-2017-0201,除专用合同条款另有约定的外,对于依法必须招标的暂估价项目,由发包人和承包人共同招标的确定暂估价供应商的,承包人应按照施工进度计划,最迟在招标工作启动前()天通知发包人并提交暂估价招标方案
复式记账法是以资产与权益平衡关系作为记账基础,对于每一笔经济业务都要在两个相互联系的账户中进行登记的一种记账方法。 ( )
企业规模越大,管理能力就越强,就越应实行集权型的财务管理体制。()
某公司向银行借入一笔款项,年利率为10%,分6次还清,从第5年至第10年每年末偿还本息5000元。下列计算该笔借款现值的算式中,正确的有()。
下列名句出自苏轼作品的有()。
2006年9月1日起实施的新《义务教育法》明确规定,所有适龄儿童、少年平等接受义务教育,国家、社会、学校、家庭必须予以保障。这也进一步明确义务教育阶段学校的教育计划应具有三个基本特征,分别是()。
某发展中国家所面临的问题是,要维持它的经济发展,必须不断加强国内企业的竞争力;要保持社会稳定,必须不断建立健全养老、医疗、失业等社会保障体系。而要建立健全社会保障体系,则需要企业每年为职工缴纳一定比例的社会保险费。如果企业每年为职工缴纳这样比例的社会保险费
设b为常数.(Ⅰ)求曲线L:y=的斜渐近线l的方程;(Ⅱ)设L与l从x=1延伸到x→∞之间的图形的面积A为有限值,求b及A的值.
最新回复
(
0
)