首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可积,求证:φ(x)=∫x0xf(u)du在[a,b]上连续,其中x0∈[a,b]
设f(x)在[a,b]可积,求证:φ(x)=∫x0xf(u)du在[a,b]上连续,其中x0∈[a,b]
admin
2020-03-16
61
问题
设f(x)在[a,b]可积,求证:φ(x)=∫
x
0
x
f(u)du在[a,b]上连续,其中x
0
∈[a,b]
选项
答案
[*],x+△x∈[a,b],考察 φ(x+△x)-φ(x)=∫
x
0
x+△x
f(u)du-∫
x
0
x
f(u)du=∫
x
x+△x
f(u)du, 由f(x)在[a,b]可积[*]f(x)在[a,b]有界.即|f(x)|≤M(x∈[a,b]),则 |φ(x+△x)-(x)|≤|∫
x
x+△x
|f(u)|du|≤M|△x|. 因此,[*],x+△x∈[a,b],有[*][φ(x+△x)-φ(x)]=0,即φ(x)在[a,b]上连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/AOA4777K
0
考研数学二
相关试题推荐
[2016年]设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
[2003年]设I1=dx,I2=dx则().
[2014年]设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.
[2011年]设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f′(0)=g′(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是().
[2006年]曲线y=的水平渐近线方程为_________.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[一a,a]上至少存在一点η,使a3f"(η)=3∫一aaf(x)dx.
(2003年试题,六)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
设f(x)是连续函数。求初值问题的解,其中a>0.
随机试题
在20世纪30年代,人们已经发现了一种有绿色和褐色纤维的棉花,但是,直到最近培育出一种可以机纺的长纤维品种后,它们才具有了商业上的价值,由于这种棉花不需要染色,加工企业就省去了染色的开销,并且避免了由染色工艺流程带来的环境污染。从题干可推出以下哪项结论?
万某2002年共取得如下收入:特许使用权所得1000元,财产租赁所得4500元,利息收入200元,计算万某当年应纳个人所得税额。
长期采用肠外营养,理想的输注静脉是
甲15周岁,系我国某边镇中学生。甲和乙一起上学,在路上捡到一手提包。打开后,发现内有1000元钱和4小袋白粉末。甲说:“这袋上有中文‘海洛因’和英文‘heroin’及‘50g’的字样。我在电视上看过,这东西就是白粉,我们把它卖了,还能发一笔财。”二人遂将4
下列不符合证券从业人员资格考试要求的是()。
A公司为B公司承建厂房一幢,工期自2007年9月1日至2009年6月30日,总造价3000万元,B公司2007年付款至总造价的25%,2008年付款至总造价的80%,余款在2009年工程完工后结算。该工程2007年发生成本500万元,年末预计尚需发生
下列各项税种中,既涉及比例税率又涉及定额税率的是( )。
教育的本质即教育的归属问题。()
有时候真正的艺术创作并不是可以用理性分析来解释的,有时候甚至是伴有几分癫狂特征的。美国当代诗人露丝.斯通(RuthStone)说她年轻的时候在地里干活,忽然感到有一首诗朝着她走过来,就如在地里出现了一阵闪电,脚下的土地也在震动。斯通赶紧跑回家里把那诗写下
马神甫事件
最新回复
(
0
)