首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(U,V)的概率密度为 又设X与Y都是离散型随机变量,其中X只取-1,0,1三个值,y只取-1,1两个值,且EX=0.2,EY=0.4.又 P(X=-1,Y=1)=P{X=1,Y=-1)=P{X=0,Y=1} 求:(1)(X,Y)
设二维随机变量(U,V)的概率密度为 又设X与Y都是离散型随机变量,其中X只取-1,0,1三个值,y只取-1,1两个值,且EX=0.2,EY=0.4.又 P(X=-1,Y=1)=P{X=1,Y=-1)=P{X=0,Y=1} 求:(1)(X,Y)
admin
2018-09-25
63
问题
设二维随机变量(U,V)的概率密度为
又设X与Y都是离散型随机变量,其中X只取-1,0,1三个值,y只取-1,1两个值,且EX=0.2,EY=0.4.又
P(X=-1,Y=1)=P{X=1,Y=-1)=P{X=0,Y=1}
求:(1)(X,Y)的概率分布;
(2)Cov(X,Y).
选项
答案
(1)由题意 [*] 于是P{X=-1,Y=1}=P{X=1,Y=-1}=P{X=0,Y=1}=0.25. 设(X,Y)的概率分布为 [*] 因此(X,Y)的概率分布为 [*] (2)因 Cov(X,Y)=E(XY)-EXEY, 其中 E(XY)=(-1)×1×0.25+1×(-1)×0.25+1×1×0.2=-0.3, 又EX=0.2,EY=0.4,所以Cov(X,Y)=-0.3-0.2×0.4=-0.38.
解析
转载请注明原文地址:https://kaotiyun.com/show/Aig4777K
0
考研数学一
相关试题推荐
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
假设测量的随机误差X一N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
已知A是3阶不可逆矩阵,一1和2是A的特征值,B=A2一A一2E,求B的特征值,并问B能否相似对角化,并说明理由.
设矩阵A=的特征值有重根,试求正交矩阵Q,使QTAQ为对角形.
求下列函数f(x)在x=0处带拉格朗日余项的n阶勒公式:(Ⅰ)f(x)=;(Ⅱ)f(x)=exsinx.
将函数f(x)=ln(x+)展成x的幂级数并求f(2n+1)(0).
设(x1,x2,…,xn)和(x1,x2,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得k1+k2是θ的无偏估计量,且在所有这样的线性估计中方差最小.
设幂级数的收敛半径为3,则幂级数的收敛区间为_______。
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵·
随机试题
Graves病的主要临床表现是()(2012年)
前列腺癌通常起源于
液体制剂中常用的助悬剂有
纠正休克所并发的酸中毒关键在于
杨某,女,40岁,有焦虑症多年,现精神恍惚,心神不宁,多疑易惊,悲忧善哭,喜怒无常,舌质淡,脉弦。治疗宜选用
一国外债结构是否合理,关键看()。
下列选项中,对封闭式基金认识不正确的是( )。
Weareenteringaperiodinwhichrapidpopulationgrowth,thepresenceofdeadlyweapons,anddwindlingresourceswillbringin
Whichofthefollowingisavoicelessbilabialstop?
ThoughitnowseemsmerelyanepisodeinthelastyearofWorldWarI,theinfluenzapandemicoftheautumnof1918wasoneoft
最新回复
(
0
)