首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[a,b]上连续,且恒大于零,证明: ∫abf(x)dx∫ab≥(b一a)2.
设函数f(x)在区间[a,b]上连续,且恒大于零,证明: ∫abf(x)dx∫ab≥(b一a)2.
admin
2018-11-21
31
问题
设函数f(x)在区间[a,b]上连续,且恒大于零,证明:
∫
a
b
f(x)dx∫
a
b
≥(b一a)
2
.
选项
答案
利用积分变量的改变,可得 ∫
a
b
f(x)dx∫
a
b
[*]dxdy, 其中D={(x,y)|a≤x≤b,a≤y≤b}.并且利用对称性(D关于y=x对称),可得 [*]
解析
有时把一元函数的积分问题转化为二元函数的积分问题便可使问题得到解决.
这里记D={(x,y)|a≤x≤b,a≤y≤b},则定积分之积就可表示为二重积分:
∫
a
b
f(x)dx∫
a
b
dxdy.
然后利用二重积分的性质便可得证.
转载请注明原文地址:https://kaotiyun.com/show/BZg4777K
0
考研数学一
相关试题推荐
在上半平面求一条凹曲线(图6.2),使其上任一点P(x,y)处的曲率等于此曲线在该点的法线PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设齐次线性方程组的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
设F(t)=f(x2+y2+z2)dv,其中f为连续函数,f(0)=0,f′(0)=1,则=().
直线L1:②().
求椭球面x2+2y2+z2=22上平行于平面x—y+2z=0的切平面方程.
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X-Y。(Ⅰ)求Z的概率密度f(z;σ2);(Ⅱ)设Z1,Z2,…,Zn为取自总体Z的简单随机样本,求σ2的最大似然估计量
设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为,且Q的第三列为(Ⅰ)求A;(Ⅱ)证明A+E为正定矩阵,其中E为三阶单位矩阵。
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分3x2ydx+(x3+x-2y)dy。
与α1=(1,2,3,-1)T,α2=(0,1,1,2)T,α3=(2,1,3,0)T都正交的单位向量是______。
随机试题
A.软骨细胞B.成骨细胞C.两者均是D.两者均否分化为骨细胞()
Whyistheapartmentinexpensiveaccordingtotheman?
要想整车试验具有正确的试验结果,必须严控试验条件。()
Homer-Trantas结节常见于
膝关节单纯滑膜结核,除全身治疗外,局部治疗首选
某机电安装公司中标了东北铸造厂以保本价为目标的机电安装工程。合同额1980万元,工程材料费占工程造价的60%,工程设备由业主提供,按照合同规定,若当地主管部门有明确的调价规定可以执行。该公司注重项目成本各阶段的控制,给项目经理部下达目标成本为1800万元,
幼儿教育评价应遵循的原则有()
下列行为中应当按盗窃罪定罪处罚的是()。
毛泽东建军思想的核心,建设新型人民军队的根本原则是()
WhenIenteredtheroom,hepretended(read)______.
最新回复
(
0
)