设f(2)=,f’(2)=0,∫02f(x)dx=1,求∫01x2f’’(2x)dx.

admin2018-05-23  13

问题 设f(2)=,f(2)=0,∫02f(x)dx=1,求∫01x2f’’(2x)dx.

选项

答案01x2f’’(2x)dx=[*]∫01(2x)2f’’(2x)d(2x)=[*]∫02x2f’’(x)dx =[*]∫02x2d[f(x)]=[*][x2f(x)|02-2∫02xf(x)dx]=-[*]∫02xdf(x) =-[*][xf(x)|02-∫02f(x)dx]=-[*][2f(2)-1]=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/Bbg4777K
0

最新回复(0)