首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 A= 若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
设 A= 若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
admin
2017-06-14
80
问题
设
A=
若a是使A正定的正整数,求正交变换化二次型x
T
Ax为标准形,并写出所用坐标变换.
选项
答案
满足矩阵A正定的正整数a=1,那么 [*] 此时,矩阵A的特征值是λ
1
=λ
2
=1,λ
3
=4. 对于λ=1,由(E-A)x=0, [*] 得到属于λ=1的特征向量是α
1
=(-1,1,0)
T
,α
2
=(-1,0,1)
T
. 对于λ=4,由(4E—A)x=0, [*] 得到属于λ=4的特征向量α
3
=(1,1,1)
T
. 对α
1
,α
2
正交规范化处理,有 [*] 单位化得到 [*] 则经x=Py,有x
T
Ax=y
T
Λy=y
1
2
+y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bpu4777K
0
考研数学一
相关试题推荐
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P→Q”表示可由性质P推出性
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
(2007年试题,24)设总体X的概率密度为X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
已知矩阵和试判断矩阵A和刀是否相似,若相似则求出可逆矩阵P,使P-1AP=B,若不相似则说明理由.
随机试题
结合作品分析巴金《家》中的觉新形象。
与机遇失之交臂在当今世界彩色胶片市场上,有美国柯达和日本富士两家公司在争雄。富士公司自1984年取得“第23届奥运会专用胶卷”特权后,目前以更加咄咄逼人的态势,决心与柯达争夺世界上的每一个顾客,柯达的霸主地位受到严重的挑战。而在上世纪70年代,柯
持久、有形、可以核实是( )方式的优点。
断裂基因
下列关于解热镇痛药的使用叙述错误的是
备案管理的传统中药制剂包括
患者,男性,17岁。患“1型糖尿病”3年,长期皮下注射胰岛素,近2天因腹泻停用。体检:意识不清,血压75/50mmHg,心率125/分,皮肤中度失水征,呼吸深大,有烂苹果味。与诊断无关的检查是
以下对风险的描述中,错误的是( )。
某公司有2000台主机,则必须给它分配(20)个C类网络。
Itiseasytosaylettersarea(n)【C1】______wayforfamilymembersto【C2】______intouchwhenthechildren【C3】______school
最新回复
(
0
)