首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 A= 若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
设 A= 若a是使A正定的正整数,求正交变换化二次型xTAx为标准形,并写出所用坐标变换.
admin
2017-06-14
63
问题
设
A=
若a是使A正定的正整数,求正交变换化二次型x
T
Ax为标准形,并写出所用坐标变换.
选项
答案
满足矩阵A正定的正整数a=1,那么 [*] 此时,矩阵A的特征值是λ
1
=λ
2
=1,λ
3
=4. 对于λ=1,由(E-A)x=0, [*] 得到属于λ=1的特征向量是α
1
=(-1,1,0)
T
,α
2
=(-1,0,1)
T
. 对于λ=4,由(4E—A)x=0, [*] 得到属于λ=4的特征向量α
3
=(1,1,1)
T
. 对α
1
,α
2
正交规范化处理,有 [*] 单位化得到 [*] 则经x=Py,有x
T
Ax=y
T
Λy=y
1
2
+y
2
2
-4y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Bpu4777K
0
考研数学一
相关试题推荐
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关;
设X,Y是两个随机变量,且P|X≤1,Y≤1}=4/9,P{X≤1}=P{Y≤1}=5/9,则P{min(X,Y)≤1}=().
(2012年试题,二)设X为三维单位列向量,E为三阶单位矩阵,则矩阵E—XXT的秩为_________________.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
简述丰田LS400汽车电控悬架系统的检修过程。
患者,男,28岁,因车祸致脑外伤入院,神志不清。查体:体温39.5℃,脉搏68次/分,呼吸17次/分,血压165/95mmHg,遵医嘱给予降温,静脉滴注甘露醇。此时最主要的降温方式是
慢性感染结局为
男性,35岁,农民,因畏寒、发热、全身酸痛6天,尿黄2天于7月28日入院,体温39℃,巩膜黄染,球结膜充血,A180IU/L,T-Bil58tXtooL/L,尿蛋白(++),RBC4—5个/HP,WBC10-12个/HP,确诊本病人的诊断依据是
复验灰线的检查内容不包括()。
根据《建设项目工程总承包管理规范》GB/T50358-2005,工程总承包项目管理的主要内容有()。
根据《汽车贷款管理办法》,个人汽车贷款的贷款人应当建立借款人信贷档案,载明()。
2016年9月,A、B、C、D协商设立普通合伙企业。其中,A、B、D系辞职职工,C系一法人型集体企业,其拟定的合伙协议约定:A以劳务出资、B、D以实物出资,对企业债务承担无限责任,并由A、D负责公司的经营管理事务;C以货币出资,对企业债务以其出资额承担有限
A、 B、 C、 D、 B
Marywasquiteconsiderateofherhusband______sheusedtomakecoffeeforhimwhenhewroteinthedeadnight.
最新回复
(
0
)