首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
设f(x)=∫—1xt|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
admin
2019-05-08
47
问题
设f(x)=∫
—1
x
t|t|dt(x≥一1),求曲线y=f(x)与x轴所围封闭图形的面积。
选项
答案
因为t|t|为奇函数,可知其原函数 f(x)=∫
—1
x
t|t|dt=∫
—1
0
|t|t|dt+∫
0
x
t|t|dt 为偶函数,因此由f(—1)=0,得f(1)=0,即y=f(x)与x轴有交点(—1,0),(1,0)。 又由f’(x)=x|x|,可知x<0时,f’(x)<0,故f(x)单调减少,从而f(x)<f(—1)=0(—1<x≤0);当x>0时,f’(x)=x|x|>0,故x>0时f(x)单调增加,且y=f(x)与x轴有唯一交点(1,0)。 因此y=f(x)与x轴交点仅有两个。 所以封闭曲线所围面积 A=∫
—1
1
|f(x)|d=2∫
—1
0
|f(x)|dx。 当x<0时,f(x)= ∫
—1
x
t|t|dt=∫
—1
0
一t
2
dt=[*](1+ x
3
),故 A=2∫
—1
0
[*](1+x
3
)dx=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/CEJ4777K
0
考研数学三
相关试题推荐
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn是取自总体X容量为2n的简单随机样本,样本均值为,统计量,求E(Y)。
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
设二维随机变量(X,Y)在区域G={(x,y)|1≤x+y≤2,0≤y≤1}上服从均匀分布。试求:(Ⅰ)(x,y)的边缘概率密度fX(x)和fY(y);(Ⅱ)Z=X+Y的概率密度fZ(y)(z)。
设F1(x),F2(x)为两个分布函数,其相应的概率密度f1(x)与f2(x)是连续函数,则必为概率密度的是()
设A=方程组AX=B有解但不唯一.(1)求a;(2)求可逆矩阵P,使得P-1AP为对角阵;(3)求正交阵Q,使得QTAQ为对角阵.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求(Ⅰ)D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)a为何值时,V(a)取到最大值?
设f(x)在(一∞,+∞)连续,在点x=0处可导.且f(0)=0.令求F’(x)并讨论其连续性.
设(Ⅰ)讨论f(x)的连续性,若有间断点并指出间断点的类型;(Ⅱ)判断f(x)在(-∞,1]是否有界,并说明理由。
随机试题
患者,女,51岁。主诉“阴道排液伴接触性出血1年”入院。患者近1年来无明显诱因出现阴道流血,鲜红色,伴白带增多呈米汤样,无异味,性生活后阴道流血增多,伴有血块。妇科检查:宫颈呈桶状,后唇见一约5cm×4cm×4cm大小的菜花状赘生物,质脆,触之易出血。
对行政管理中出现的失误,不仅要追究行政管理当事人责任,而且还要追究相关领导人责任的一种制度是【】
治疗脱肛穴位,其经别入于肛门,其经筋结于臀的穴位是
急性心包炎的心电图改变为
扩张型心肌病的临床表现哪一项错误
宏观经济管理所追求的经济总量平衡是一种()基本平衡。
写字楼物业投保的最大特点是()。
阅读下面一段说明文,完成下列5题。什么是星云?过去人们往往把天空中一切云雾状的天体都说成是星云。其实,离我们非常遥远的位于银河系以外的云雾状天体,并不是星云,而是与银河系类似的庞大的恒星系统。根据它们的外貌,人们有时也称其为河外星云,即银河系以外的星云。
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
Mybossorderedthatthelegaldocuments___tohimbeforelunch.
最新回复
(
0
)