设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1) (n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.

admin2018-01-23  46

问题 设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un-1)
(n=1,2,…),u0∈[a,b],证明:级数(un+1-un)绝对收敛.

选项

答案由|un+1-un|=|f(un-f(un-1))=|f’(ξ)||un-un-1| ≤q|un-un-1|≤q2|un-1-un-2|≤…≤qn|u1-u0| [*]|un+1-un|收敛,于是[*](un+1-un)绝对收敛.

解析
转载请注明原文地址:https://kaotiyun.com/show/2jX4777K
0

最新回复(0)